Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 11 |
Descriptor
Error of Measurement | 11 |
Computation | 6 |
Scores | 6 |
Achievement Tests | 5 |
Statistical Bias | 5 |
Achievement Rating | 4 |
Evaluation Methods | 4 |
Research Methodology | 4 |
Sample Size | 4 |
Data Analysis | 3 |
Educational Practices | 3 |
More ▼ |
Source
Journal of Educational and… | 3 |
Stanford Center for Education… | 3 |
Journal of Research on… | 2 |
Education and the Public… | 1 |
Grantee Submission | 1 |
MDRC | 1 |
Author
Publication Type
Reports - Research | 10 |
Journal Articles | 6 |
Numerical/Quantitative Data | 1 |
Reports - Evaluative | 1 |
Education Level
Grade 4 | 2 |
Secondary Education | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 2 |
Measures of Academic Progress | 1 |
What Works Clearinghouse Rating
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Shear, Benjamin R.; Reardon, Sean F. – Stanford Center for Education Policy Analysis, 2019
This paper describes a method for pooling grouped, ordered-categorical data across multiple waves to improve small-sample heteroskedastic ordered probit (HETOP) estimates of latent distributional parameters. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in each of a small…
Descriptors: Computation, Scores, Statistical Distributions, Sample Size
Reardon, Sean F.; Kalogrides, Demetra; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2021
Linking score scales across different tests is considered speculative and fraught, even at the aggregate level. We introduce and illustrate validation methods for aggregate linkages, using the challenge of linking U.S. school district average test scores across states as a motivating example. We show that aggregate linkages can be validated both…
Descriptors: Equated Scores, Validity, Methods, School Districts
Reardon, Sean F.; Ho, Andrew D.; Kalogrides, Demetra – Stanford Center for Education Policy Analysis, 2019
Linking score scales across different tests is considered speculative and fraught, even at the aggregate level (Feuer et al., 1999; Thissen, 2007). We introduce and illustrate validation methods for aggregate linkages, using the challenge of linking U.S. school district average test scores across states as a motivating example. We show that…
Descriptors: Test Validity, Evaluation Methods, School Districts, Scores
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R. – Journal of Research on Educational Effectiveness, 2017
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Intervention, Quasiexperimental Design, Simulation
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P. – MDRC, 2014
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Research Design, Quasiexperimental Design, Research Methodology
Reardon, Sean F.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2015
In an earlier paper, we presented methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. We demonstrated that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Reardon, Sean F.; Ho, Andrew D. – Grantee Submission, 2015
Ho and Reardon (2012) present methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. They demonstrate that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Reardon, Sean F.; Kalogrides, Demetra; Ho, Andrew D. – Stanford Center for Education Policy Analysis, 2017
There is no comprehensive database of U.S. district-level test scores that is comparable across states. We describe and evaluate a method for constructing such a database. First, we estimate linear, reliability-adjusted linking transformations from state test score scales to the scale of the National Assessment of Educational Progress (NAEP). We…
Descriptors: School Districts, Scores, Statistical Distributions, Database Design
Raudenbush, Stephen W.; Reardon, Sean F.; Nomi, Takako – Journal of Research on Educational Effectiveness, 2012
Multisite trials can clarify the average impact of a new program and the heterogeneity of impacts across sites. Unfortunately, in many applications, compliance with treatment assignment is imperfect. For these applications, we propose an instrumental variable (IV) model with person-specific and site-specific random coefficients. Site-specific IV…
Descriptors: Program Evaluation, Statistical Analysis, Hierarchical Linear Modeling, Computation
Reardon, Sean F. – Education and the Public Interest Center, 2009
"How New York City's Charter Schools Affect Achievement" estimates the effects on student achievement of attending a New York City charter school rather than a traditional public school and investigates the characteristics of charter schools associated with the most positive effects on achievement. Because the report relies on an…
Descriptors: Charter Schools, Academic Achievement, Achievement Gains, Achievement Rating