Publication Date
In 2025 | 3 |
Since 2024 | 13 |
Since 2021 (last 5 years) | 37 |
Since 2016 (last 10 years) | 85 |
Since 2006 (last 20 years) | 153 |
Descriptor
Error of Measurement | 259 |
Item Response Theory | 66 |
Statistical Analysis | 60 |
Correlation | 56 |
Sample Size | 52 |
Simulation | 47 |
Comparative Analysis | 46 |
Scores | 45 |
Models | 44 |
Monte Carlo Methods | 44 |
Test Items | 42 |
More ▼ |
Source
Educational and Psychological… | 259 |
Author
Raykov, Tenko | 7 |
Marcoulides, George A. | 6 |
Brennan, Robert L. | 5 |
DeMars, Christine E. | 5 |
Shi, Dexin | 5 |
Wang, Wen-Chung | 5 |
Zumbo, Bruno D. | 5 |
Cai, Li | 4 |
Finch, W. Holmes | 4 |
Paek, Insu | 4 |
Zimmerman, Donald W. | 4 |
More ▼ |
Publication Type
Journal Articles | 237 |
Reports - Research | 164 |
Reports - Evaluative | 56 |
Reports - Descriptive | 15 |
Speeches/Meeting Papers | 5 |
Guides - Non-Classroom | 2 |
Information Analyses | 1 |
Opinion Papers | 1 |
Education Level
Audience
Location
Canada | 2 |
Germany | 2 |
Taiwan | 2 |
Australia | 1 |
Belgium | 1 |
Chile | 1 |
Georgia | 1 |
Saudi Arabia | 1 |
South Korea | 1 |
United Kingdom (Wales) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dexin Shi; Bo Zhang; Ren Liu; Zhehan Jiang – Educational and Psychological Measurement, 2024
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and…
Descriptors: Goodness of Fit, Factor Analysis, Simulation, Accuracy
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
David Goretzko; Karik Siemund; Philipp Sterner – Educational and Psychological Measurement, 2024
Confirmatory factor analyses (CFA) are often used in psychological research when developing measurement models for psychological constructs. Evaluating CFA model fit can be quite challenging, as tests for exact model fit may focus on negligible deviances, while fit indices cannot be interpreted absolutely without specifying thresholds or cutoffs.…
Descriptors: Factor Analysis, Goodness of Fit, Psychological Studies, Measurement
Christine E. DeMars; Paulius Satkus – Educational and Psychological Measurement, 2024
Marginal maximum likelihood, a common estimation method for item response theory models, is not inherently a Bayesian procedure. However, due to estimation difficulties, Bayesian priors are often applied to the likelihood when estimating 3PL models, especially with small samples. Little focus has been placed on choosing the priors for marginal…
Descriptors: Item Response Theory, Statistical Distributions, Error of Measurement, Bayesian Statistics
Jiang, Zhehan; Raymond, Mark; DiStefano, Christine; Shi, Dexin; Liu, Ren; Sun, Junhua – Educational and Psychological Measurement, 2022
Computing confidence intervals around generalizability coefficients has long been a challenging task in generalizability theory. This is a serious practical problem because generalizability coefficients are often computed from designs where some facets have small sample sizes, and researchers have little guide regarding the trustworthiness of the…
Descriptors: Monte Carlo Methods, Intervals, Generalizability Theory, Error of Measurement
Hung-Yu Huang – Educational and Psychological Measurement, 2025
The use of discrete categorical formats to assess psychological traits has a long-standing tradition that is deeply embedded in item response theory models. The increasing prevalence and endorsement of computer- or web-based testing has led to greater focus on continuous response formats, which offer numerous advantages in both respondent…
Descriptors: Response Style (Tests), Psychological Characteristics, Item Response Theory, Test Reliability
Stephanie M. Bell; R. Philip Chalmers; David B. Flora – Educational and Psychological Measurement, 2024
Coefficient omega indices are model-based composite reliability estimates that have become increasingly popular. A coefficient omega index estimates how reliably an observed composite score measures a target construct as represented by a factor in a factor-analysis model; as such, the accuracy of omega estimates is likely to depend on correct…
Descriptors: Influences, Models, Measurement Techniques, Reliability
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Tenko Raykov – Educational and Psychological Measurement, 2024
This note is concerned with the benefits that can result from the use of the maximal reliability and optimal linear combination concepts in educational and psychological research. Within the widely used framework of unidimensional multi-component measuring instruments, it is demonstrated that the linear combination of their components that…
Descriptors: Educational Research, Behavioral Science Research, Reliability, Error of Measurement
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Hyunjung Lee; Heining Cham – Educational and Psychological Measurement, 2024
Determining the number of factors in exploratory factor analysis (EFA) is crucial because it affects the rest of the analysis and the conclusions of the study. Researchers have developed various methods for deciding the number of factors to retain in EFA, but this remains one of the most difficult decisions in the EFA. The purpose of this study is…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Goodness of Fit
Rebekka Kupffer; Susanne Frick; Eunike Wetzel – Educational and Psychological Measurement, 2024
The multidimensional forced-choice (MFC) format is an alternative to rating scales in which participants rank items according to how well the items describe them. Currently, little is known about how to detect careless responding in MFC data. The aim of this study was to adapt a number of indices used for rating scales to the MFC format and…
Descriptors: Measurement Techniques, Alternative Assessment, Rating Scales, Questionnaires
Han, Yuting; Zhang, Jihong; Jiang, Zhehan; Shi, Dexin – Educational and Psychological Measurement, 2023
In the literature of modern psychometric modeling, mostly related to item response theory (IRT), the fit of model is evaluated through known indices, such as X[superscript 2], M2, and root mean square error of approximation (RMSEA) for absolute assessments as well as Akaike information criterion (AIC), consistent AIC (CAIC), and Bayesian…
Descriptors: Goodness of Fit, Psychometrics, Error of Measurement, Item Response Theory
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Educational and Psychological Measurement, 2022
Multilevel structural equation modeling (MSEM) allows researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This article…
Descriptors: Structural Equation Models, Factor Structure, Statistical Bias, Error of Measurement
Raykov, Tenko; DiStefano, Christine; Calvocoressi, Lisa; Volker, Martin – Educational and Psychological Measurement, 2022
A class of effect size indices are discussed that evaluate the degree to which two nested confirmatory factor analysis models differ from each other in terms of fit to a set of observed variables. These descriptive effect measures can be used to quantify the impact of parameter restrictions imposed in an initially considered model and are free…
Descriptors: Effect Size, Models, Measurement Techniques, Factor Analysis