Descriptor
Source
Structural Equation Modeling | 4 |
Publication Type
Journal Articles | 4 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Sivo, Stephen A.; Willson, Victor L. – Structural Equation Modeling, 2000
Studied whether moving average or autoregressive moving average models fit two longitudinal data sets previously thought to possess quasi-simplex structures better than the quasi-simplex, one-factor, or autoregressive models. Results of a Monte Carlo study show the importance of evaluating the fit, propriety, and parsimony of models before one…
Descriptors: Causal Models, Error of Measurement, Goodness of Fit, Longitudinal Studies
Dudgeon, Paul – Structural Equation Modeling, 2004
This article considers the implications for other noncentrality parameter-based statistics from Steiger's (1998) multiple sample adjustment to the root mean square error of approximation (RMSEA) measure. When a structural equation model is fitted simultaneously in more than 1 sample, it is shown that the calculation of the noncentrality parameter…
Descriptors: Statistical Analysis, Monte Carlo Methods, Structural Equation Models, Error of Measurement

Bandalos, Deborah L. – Structural Equation Modeling, 1997
Monte Carlo methods were used to study the accuracy and utility of estimators of overall error and error due to approximation in structural equation modeling. Effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter also was examined. Choosing among competing models is…
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Monte Carlo Methods

Finch, John F.; And Others – Structural Equation Modeling, 1997
A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. Results illustrate the adverse effects of nonnormality on the accuracy of significance tests in latent variable models estimated using normal theory maximum likelihood statistics. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods