NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Walters, Glenn D. – International Journal of Social Research Methodology, 2019
Identifying mediators in variable chains as part of a causal mediation analysis can shed light on issues of causation, assessment, and intervention. However, coefficients and effect sizes in a causal mediation analysis are nearly always small. This can lead those less familiar with the approach to reject the results of causal mediation analysis.…
Descriptors: Effect Size, Statistical Analysis, Sampling, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pek, Jolynn; Wong, Octavia; Wong, C. M. – Practical Assessment, Research & Evaluation, 2017
Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…
Descriptors: Data Analysis, Regression (Statistics), Statistical Inference, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Weller, Susan C. – Field Methods, 2015
This article presents a simple approach to making quick sample size estimates for basic hypothesis tests. Although there are many sources available for estimating sample sizes, methods are not often integrated across statistical tests, levels of measurement of variables, or effect sizes. A few parameters are required to estimate sample sizes and…
Descriptors: Sample Size, Statistical Analysis, Computation, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Beasley, T. Mark – Journal of Experimental Education, 2014
Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…
Descriptors: Statistical Analysis, Effect Size, Nonparametric Statistics, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Pantelis, Peter C.; Kennedy, Daniel P. – Autism: The International Journal of Research and Practice, 2016
Two-phase designs in epidemiological studies of autism prevalence introduce methodological complications that can severely limit the precision of resulting estimates. If the assumptions used to derive the prevalence estimate are invalid or if the uncertainty surrounding these assumptions is not properly accounted for in the statistical inference…
Descriptors: Foreign Countries, Pervasive Developmental Disorders, Autism, Incidence
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Bing; Dalal, Siddhartha R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2012
There is widespread interest in using various statistical inference tools as a part of the evaluations for individual teachers and schools. Evaluation systems typically involve classifying hundreds or even thousands of teachers or schools according to their estimated performance. Many current evaluations are largely based on individual estimates…
Descriptors: Statistical Inference, Error of Measurement, Classification, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Fritz, Matthew S.; Taylor, Aaron B.; MacKinnon, David P. – Multivariate Behavioral Research, 2012
Previous studies of different methods of testing mediation models have consistently found two anomalous results. The first result is elevated Type I error rates for the bias-corrected and accelerated bias-corrected bootstrap tests not found in nonresampling tests or in resampling tests that did not include a bias correction. This is of special…
Descriptors: Statistical Analysis, Error of Measurement, Statistical Bias, Sampling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
What Works Clearinghouse, 2014
This "What Works Clearinghouse Procedures and Standards Handbook (Version 3.0)" provides a detailed description of the standards and procedures of the What Works Clearinghouse (WWC). The remaining chapters of this Handbook are organized to take the reader through the basic steps that the WWC uses to develop a review protocol, identify…
Descriptors: Educational Research, Guides, Intervention, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsen, Robert B.; Unlu, Fatih; Price, Cristofer; Jaciw, Andrew P. – National Center for Education Evaluation and Regional Assistance, 2011
This report examines the differences in impact estimates and standard errors that arise when these are derived using state achievement tests only (as pre-tests and post-tests), study-administered tests only, or some combination of state- and study-administered tests. State tests may yield different evaluation results relative to a test that is…
Descriptors: Achievement Tests, Standardized Tests, State Standards, Reading Achievement
Thompson, Bruce – 1987
This paper evaluates the logic underlying various criticisms of statistical significance testing and makes specific recommendations for scientific and editorial practice that might better increase the knowledge base. Reliance on the traditional hypothesis testing model has led to a major bias against nonsignificant results and to misinterpretation…
Descriptors: Analysis of Variance, Data Interpretation, Editors, Effect Size