NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 118 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Educational and Behavioral Statistics, 2022
The presence of clustered data is common in the sociobehavioral sciences. One approach that specifically deals with clustered data but has seen little use in education is the generalized estimating equations (GEEs) approach. We provide a background on GEEs, discuss why it is appropriate for the analysis of clustered data, and provide worked…
Descriptors: Multivariate Analysis, Computation, Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L.; Zhang, Bixi; Li, Xintong – Journal of Research on Educational Effectiveness, 2023
Binary outcomes are often analyzed in cluster randomized trials (CRTs) using logistic regression and cluster robust standard errors (CRSEs) are routinely used to account for the dependent nature of nested data in such models. However, CRSEs can be problematic when the number of clusters is low (e.g., < 50) and, with CRTs, a low number of…
Descriptors: Robustness (Statistics), Error of Measurement, Regression (Statistics), Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Francesco Innocenti; Math J. J. M. Candel; Frans E. S. Tan; Gerard J. P. van Breukelen – Journal of Educational and Behavioral Statistics, 2024
Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based…
Descriptors: Sample Size, Multivariate Analysis, Error of Measurement, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2021
Previous research found bias in the estimate of the overall fixed effects and variance components using multilevel meta-analyses of standardized single-case data. Therefore, we evaluate two adjustments in an attempt to reduce the bias and improve the statistical properties of the parameter estimates. The results confirm the existence of bias when…
Descriptors: Statistical Bias, Multivariate Analysis, Meta Analysis, Research Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ahmet Yildirim; Nizamettin Koç – International Journal of Assessment Tools in Education, 2024
The present research aims to examine whether the questions in the Program for the International Student Assessment (PISA) 2009 reading literacy instrument display differential item functioning (DIF) among the Turkish, French, and American samples based on univariate and multivariate matching techniques before and after the total score, which is…
Descriptors: Test Items, Item Analysis, Correlation, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Chun; Zhang, Xue – Grantee Submission, 2019
The relations among alternative parameterizations of the binary factor analysis (FA) model and two-parameter logistic (2PL) item response theory (IRT) model have been thoroughly discussed in literature (e.g., Lord & Novick, 1968; Takane & de Leeuw, 1987; McDonald, 1999; Wirth & Edwards, 2007; Kamata & Bauer, 2008). However, the…
Descriptors: Test Items, Error of Measurement, Item Response Theory, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yesiltas, Gonca; Paek, Insu – Educational and Psychological Measurement, 2020
A log-linear model (LLM) is a well-known statistical method to examine the relationship among categorical variables. This study investigated the performance of LLM in detecting differential item functioning (DIF) for polytomously scored items via simulations where various sample sizes, ability mean differences (impact), and DIF types were…
Descriptors: Simulation, Sample Size, Item Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Jamshidi, Laleh; Declercq, Lies; Fernández-Castilla, Belén; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The focus of the current study is on handling the dependence among multiple regression coefficients representing the treatment effects when meta-analyzing data from single-case experimental studies. We compare the results when applying three different multilevel meta-analytic models (i.e., a univariate multilevel model avoiding the dependence, a…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Meta Analysis, Regression (Statistics)
Smith, Kendal N.; Lamb, Kristen N.; Henson, Robin K. – Gifted Child Quarterly, 2020
Multivariate analysis of variance (MANOVA) is a statistical method used to examine group differences on multiple outcomes. This article reports results of a review of MANOVA in gifted education journals between 2011 and 2017 (N = 56). Findings suggest a number of conceptual and procedural misunderstandings about the nature of MANOVA and its…
Descriptors: Multivariate Analysis, Academically Gifted, Gifted Education, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Magnus, Brooke E.; Thissen, David – Journal of Educational and Behavioral Statistics, 2017
Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…
Descriptors: Item Response Theory, Models, Multivariate Analysis, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
Descriptors: Error of Measurement, Monte Carlo Methods, Data Collection, Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8