NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Aydin, Burak; Gurel, Sungur – Journal of Experimental Education, 2019
This Monte Carlo simulation study compares methods to estimate the effects of programs with multiple versions when assignment of individuals to program version is not random. These methods use generalized propensity scores, which are predicted probabilities of receiving a particular level of the treatment conditional on covariates, to remove…
Descriptors: Probability, Weighted Scores, Monte Carlo Methods, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
Descriptors: Error of Measurement, Monte Carlo Methods, Data Collection, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Dong, Nianbo – American Journal of Evaluation, 2015
Researchers have become increasingly interested in programs' main and interaction effects of two variables (A and B, e.g., two treatment variables or one treatment variable and one moderator) on outcomes. A challenge for estimating main and interaction effects is to eliminate selection bias across A-by-B groups. I introduce Rubin's causal model to…
Descriptors: Probability, Statistical Analysis, Research Design, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Le, Huy; Marcus, Justin – Educational and Psychological Measurement, 2012
This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…
Descriptors: Monte Carlo Methods, Probability, Mathematical Concepts, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2012
Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…
Descriptors: Computation, Regression (Statistics), Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Sandbach, Robert; Jin, Rong; MacInnes, Jann W.; Jackman, M. Grace-Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and…
Descriptors: Structural Equation Models, Probability, Computation, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Lu, Bin – Multivariate Behavioral Research, 2007
This article proposes an intuitive approach for predictive discriminant analysis with mixed continuous, dichotomous, and ordered categorical variables that are defined via an underlying multivariate normal distribution with a threshold specification. The classification rule is based on the comparison of the observed data logarithm probability…
Descriptors: Factor Analysis, Discriminant Analysis, Probability, Monte Carlo Methods
Peer reviewed Peer reviewed
Hutchinson, J. Wesley; Mungale, Amitabh – Psychometrika, 1997
A nonmetric algorithm, pairwise partitioning, is developed to identify feature-based similarity structures. Presents theorems about the validity of the features identified by the algorithm, and reports results of Monte Carlo simulations that estimate the probabilities of identifying valid features for different feature structures and amounts of…
Descriptors: Algorithms, Error of Measurement, Estimation (Mathematics), Identification