NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Seltzer, Michael; Novak, John; Choi, Kilchan; Lim, Nelson – Journal of Educational and Behavioral Statistics, 2002
Examines the ways in which level-1 outliers can impact the estimation of fixed effects and random effects in hierarchical models (HMs). Also outlines and illustrates the use of Markov Chain Monte Carlo algorithms for conducting sensitivity analyses under "t" level-1 assumptions, including algorithms for settings in which the degrees of…
Descriptors: Algorithms, Estimation (Mathematics), Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Hutchinson, J. Wesley; Mungale, Amitabh – Psychometrika, 1997
A nonmetric algorithm, pairwise partitioning, is developed to identify feature-based similarity structures. Presents theorems about the validity of the features identified by the algorithm, and reports results of Monte Carlo simulations that estimate the probabilities of identifying valid features for different feature structures and amounts of…
Descriptors: Algorithms, Error of Measurement, Estimation (Mathematics), Identification
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; And Others – Psychometrika, 1989
A method is presented that simultaneously estimates cluster membership and corresponding regression functions for a sample of observations or subjects. This methodology is presented with the simulated annealing-based algorithm. A set of Monte Carlo analyses is included to demonstrate the performance of the algorithm. (SLD)
Descriptors: Algorithms, Cluster Analysis, Estimation (Mathematics), Least Squares Statistics
Peer reviewed Peer reviewed
Young, Martin R.; DeSarbo, Wayne S. – Psychometrika, 1995
A new parametric maximum likelihood procedure is proposed for estimating ultrametric trees for the analysis of conditional rank order proximity data. Technical aspects of the model and the estimation algorithm are discussed, and Monte Carlo results illustrate its application. A consumer psychology application is also examined. (SLD)
Descriptors: Algorithms, Consumer Economics, Estimation (Mathematics), Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Cudeck, Robert – Journal of Educational Statistics, 1991
Two algorithms that automatically select subsets of variables (PACE algorithm) and reference variables (Fabin estimators), respectively, used for the noniterative estimators are presented. The PACE algorithm is based on a nonsymmetric matrix sweep operator. A Monte Carlo experiment compares the relative performance of these estimators and others.…
Descriptors: Algorithms, Comparative Analysis, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation
Chang, Shun-Wen; Twu, Bor-Yaun – 1998
This study investigated and compared the properties of five methods of item exposure control within the purview of estimating examinees' abilities in a computerized adaptive testing (CAT) context. Each of the exposure control algorithms was incorporated into the item selection procedure and the adaptive testing progressed based on the CAT design…
Descriptors: Adaptive Testing, Algorithms, Comparative Analysis, Computer Assisted Testing
Butler, Ronald W. – 1985
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
Descriptors: Algorithms, Estimation (Mathematics), Mathematical Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Kim, Seock-Ho; And Others – Applied Psychological Measurement, 1994
Type I error rates of F. M. Lord's chi square test for differential item functioning were investigated using Monte Carlo simulations with marginal maximum likelihood estimation and marginal Bayesian estimation algorithms. Lord's chi square did not provide useful Type I error control for the three-parameter logistic model at these sample sizes.…
Descriptors: Algorithms, Bayesian Statistics, Chi Square, Error of Measurement
Peer reviewed Peer reviewed
Cudeck, Robert; Browne, Michael W. – Psychometrika, 1992
A method is proposed for constructing a population covariance matrix as the sum of a particular model plus a nonstochastic residual matrix, with the stipulation that the model holds with a prespecified lack of fit. The procedure is considered promising for Monte Carlo studies. (SLD)
Descriptors: Algorithms, Equations (Mathematics), Estimation (Mathematics), Factor Analysis