NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Huitema, Bradley E.; McKean, Joseph W. – Educational and Psychological Measurement, 1994
Effectiveness of jackknife methods in reducing bias in estimation of the log-1 autocorrelation parameter p1 was evaluated through a Monte Carlo study using sample sizes ranging from 6 to 500. These estimates appear less biased in the small sample case than many that have been investigated recently. (SLD)
Descriptors: Computer Simulation, Estimation (Mathematics), Monte Carlo Methods, Sample Size
Sadek, Ramses F.; Huberty, Carl J. – 1992
Using computer simulation data, the effect of a single global outlier in two-group classification analysis was explored in terms of the outcome variables of change in classification results (PCHNG), change in misclassification rate (MISDIF), and change in precision of misclassification rate estimation. The precision of misclassification rate…
Descriptors: Change, Classification, Computer Simulation, Estimation (Mathematics)
Peer reviewed Peer reviewed
Mendoza, Jorge L.; And Others – Multivariate Behavioral Research, 1991
Using a Monte Carlo simulation, a bootstrap procedure was evaluated for setting a confidence interval on the unrestricted population correlation (rho) assuming various degrees of incomplete truncation on the predictor. Sample size was the most important factor in determining accuracy and stability. Sample size should be at least 50. (SLD)
Descriptors: Computer Simulation, Correlation, Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Brown, R. L. – Educational and Psychological Measurement, 1991
The effect that collapsing ordered polytomous variable scales has on structural equation measurement model parameter estimates was examined. Four parameter estimation procedures were investigated in a Monte Carlo study. Collapsing categories in ordered polytomous variables had little effect when latent projection procedures were used. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Lautenschlager, Gary J.; And Others – Educational and Psychological Measurement, 1989
A method for estimating the first eigenvalue of random data correlation matrices is reported, and its precision is demonstrated via comparison to the method of S. J. Allen and R. Hubbard (1986). Data generated in Monte Carlo simulations with 10 sample sizes reaching up to 1,000 were used. (SLD)
Descriptors: Computer Simulation, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Law, Kenneth S. – Journal of Educational and Behavioral Statistics, 1995
Two new methods of estimating the mean population correlation (M) and the standard deviation of population correlations (SD) were suggested and tested by Monte Carlo simulations. Results show no consistent advantage to using the Pearson correlation or Fisher's Z in estimating M or SD; estimates from all methods are similar. (SLD)
Descriptors: Computer Simulation, Correlation, Effect Size, Estimation (Mathematics)
Reynolds, Sharon; Day, Jim – 1984
Monte Carlo studies explored the sampling characteristics of Cohen's d and three approximations to Cohen's d when used as average effect size measures in meta-analysis. Reviews of 10, 100, and 500 studies (M) were simulated, with degrees of freedom (df) varied in seven steps from 8 to 58. In a two independent groups design, samples were obtained…
Descriptors: Computer Simulation, Effect Size, Estimation (Mathematics), Meta Analysis
Peer reviewed Peer reviewed
Bacon, Donald R. – Multivariate Behavioral Research, 1995
A maximum likelihood approach to correlational outlier identification is introduced and compared to the Mahalanobis D squared and Comrey D statistics through Monte Carlo simulation. Identification performance depends on the nature of correlational outliers and the measure used, but the maximum likelihood approach is the most robust performance…
Descriptors: Comparative Analysis, Computer Simulation, Correlation, Estimation (Mathematics)
Peer reviewed Peer reviewed
Ichikawa, Masanori – Psychometrika, 1992
Asymptotic distributions of the estimators of communalities are derived for the maximum likelihood method in factor analysis. It is shown that equating the asymptotic standard error of the communality estimate to the unique variance estimate is not correct for the unstandardized case. Monte Carlo simulations illustrate the study. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Estimation (Mathematics), Factor Analysis
Peer reviewed Peer reviewed
Chen, Ru San; Dunlap, William P. – Journal of Educational Statistics, 1994
The present simulation study confirms that the corrected epsilon approximate test of B. Lecoutre yields a less biased estimation of population epsilon and reduces Type I error rates when compared to the epsilon approximate test of H. Huynh and L. S. Feldt. (SLD)
Descriptors: Computer Simulation, Estimation (Mathematics), Evaluation Methods, Monte Carlo Methods
Peer reviewed Peer reviewed
Gressard, Risa P.; Loyd, Brenda H. – Journal of Educational Measurement, 1991
A Monte Carlo study, which simulated 10,000 examinees' responses to four tests, investigated the effect of item stratification on parameter estimation in multiple matrix sampling of achievement data. Practical multiple matrix sampling is based on item stratification by item discrimination and a sampling plan with moderate number of subtests. (SLD)
Descriptors: Achievement Tests, Comparative Testing, Computer Simulation, Estimation (Mathematics)
Peer reviewed Peer reviewed
Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation
Elliott, Ronald S.; Barcikowski, Robert S. – 1993
This Monte Carlo study examines whether, given various numbers of variables, treatments, and sample sizes, in a one-way multivariate analysis of variance, Type I error rates of the test approximations provided by the BMDP program, the Statistical Analysis System (SAS), and the Statistical Package for the Social Sciences (SPSS) for Roy's largest…
Descriptors: Analysis of Variance, Computer Simulation, Estimation (Mathematics), Monte Carlo Methods
Lix, Lisa M.; Keselman, H. J. – 1993
Current omnibus procedures for the analysis of interaction effects in repeated measures designs which contain a grouping variable are known to be nonrobust to violations of multisample sphericity, particularly when group sizes are unequal. An alternative approach is to formulate a comprehensive set of contrasts on the data which probe the specific…
Descriptors: Comparative Analysis, Computer Simulation, Equations (Mathematics), Estimation (Mathematics)
Williams, Janice E. – 1987
A Monte Carlo study was done to determine the adequate sample size for quasi-experimental regression studies, which compare regression lines for two groups and estimate their point of intersection. Populations of 1,000 subjects in each of two groups were constructed (using random normal deviates) to yield equivalent regression lines of opposite…
Descriptors: Computer Simulation, Estimation (Mathematics), Monte Carlo Methods, Quasiexperimental Design
Previous Page | Next Page ยป
Pages: 1  |  2  |  3