Publication Date
In 2025 | 10 |
Descriptor
Bayesian Statistics | 10 |
Evaluation Methods | 10 |
Comparative Analysis | 4 |
Simulation | 4 |
Accuracy | 3 |
Item Analysis | 3 |
Item Response Theory | 3 |
Models | 3 |
Sample Size | 3 |
Academic Achievement | 2 |
Achievement Tests | 2 |
More ▼ |
Source
Journal of Educational and… | 5 |
Grantee Submission | 1 |
Journal of Cognition and… | 1 |
Journal of Experimental… | 1 |
Language Learning & Technology | 1 |
Physical Review Physics… | 1 |
Author
Alexander D. Latham | 1 |
Alexander Etz | 1 |
Barbara W. Sarnecka | 1 |
Carly Oddleifson | 1 |
David A. Klingbeil | 1 |
David Kaplan | 1 |
Frederick J. Poole | 1 |
Ishan N. Vengurlekar | 1 |
Jean-Paul Fox | 1 |
Jeff Coon | 1 |
Jessica S. Kim | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 9 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 2 |
Intermediate Grades | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Primary Education | 1 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
Program for International… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Jeff Coon; Paulina N. Silva; Alexander Etz; Barbara W. Sarnecka – Journal of Cognition and Development, 2025
Bayesian methods offer many advantages when applied to psychological research, yet they may seem esoteric to researchers who are accustomed to traditional methods. This paper aims to lower the barrier of entry for developmental psychologists who are interested in using Bayesian methods. We provide worked examples of how to analyze common study…
Descriptors: Developmental Psychology, Bayesian Statistics, Research Methodology, Psychological Studies
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Yang Du; Susu Zhang – Journal of Educational and Behavioral Statistics, 2025
Item compromise has long posed challenges in educational measurement, jeopardizing both test validity and test security of continuous tests. Detecting compromised items is therefore crucial to address this concern. The present literature on compromised item detection reveals two notable gaps: First, the majority of existing methods are based upon…
Descriptors: Item Response Theory, Item Analysis, Bayesian Statistics, Educational Assessment
Paul Tschisgale; Marcus Kubsch; Peter Wulff; Stefan Petersen; Knut Neumann – Physical Review Physics Education Research, 2025
Problem solving is considered an essential ability for becoming an expert in physics, and individualized feedback on the structure of problem-solving processes is a key component to support students in developing this ability. Problem-solving processes consist of multiple elements whose order forms the sequential structure of these processes.…
Descriptors: Problem Solving, Physics, Science Instruction, Teaching Methods
Bayesian Adaptive Lasso for the Detection of Differential Item Functioning in Graded Response Models
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Frederick J. Poole; Matthew D. Coss; Jody Clarke-Midura – Language Learning & Technology, 2025
This study explored the use of stealth assessments within a digital game to assess second language (L2) Chinese learners' reading comprehension. Log data tracking learners' in-game behaviors from a game designed for Chinese dual language immersion classrooms (Poole et al., 2022) were used to construct Bayesian Belief Networks to model reading…
Descriptors: Second Language Instruction, Second Language Learning, Reading Comprehension, Game Based Learning
Carly Oddleifson; Stephen Kilgus; David A. Klingbeil; Alexander D. Latham; Jessica S. Kim; Ishan N. Vengurlekar – Grantee Submission, 2025
The purpose of this study was to conduct a conceptual replication of Pendergast et al.'s (2018) study that examined the diagnostic accuracy of a nomogram procedure, also known as a naive Bayesian approach. The specific naive Bayesian approach combined academic and social-emotional and behavioral (SEB) screening data to predict student performance…
Descriptors: Bayesian Statistics, Accuracy, Social Emotional Learning, Diagnostic Tests