NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacob Whitehill; Jennifer LoCasale-Crouch – Journal of Educational Data Mining, 2024
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning…
Descriptors: Artificial Intelligence, Teacher Evaluation, Models, Transcripts (Written Records)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boxuan Ma; Sora Fukui; Yuji Ando; Shinichi Konomi – Journal of Educational Data Mining, 2024
Language proficiency diagnosis is essential to extract fine-grained information about the linguistic knowledge states and skill mastery levels of test takers based on their performance on language tests. Different from comprehensive standardized tests, many language learning apps often revolve around word-level questions. Therefore, knowledge…
Descriptors: Language Proficiency, Brain Hemisphere Functions, Language Processing, Task Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pelanek, Radek – Journal of Educational Data Mining, 2015
Researchers use many different metrics for evaluation of performance of student models. The aim of this paper is to provide an overview of commonly used metrics, to discuss properties, advantages, and disadvantages of different metrics, to summarize current practice in educational data mining, and to provide guidance for evaluation of student…
Descriptors: Models, Data Analysis, Data Processing, Evaluation Criteria
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability