Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 38 |
Descriptor
Source
Multivariate Behavioral… | 69 |
Author
Lee, Sik-Yum | 3 |
McDonald, Roderick P. | 3 |
Raykov, Tenko | 3 |
Davison, Mark L. | 2 |
Goffin, Richard D. | 2 |
Kim, Se-Kang | 2 |
Lorenzo-Seva, Urbano | 2 |
MacCallum, Robert C. | 2 |
Penev, Spiridon | 2 |
Reichardt, Charles S. | 2 |
Sijtsma, Klaas | 2 |
More ▼ |
Publication Type
Journal Articles | 68 |
Reports - Research | 31 |
Reports - Evaluative | 22 |
Reports - Descriptive | 16 |
Opinion Papers | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 4 |
Adult Education | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Kindergarten | 1 |
Audience
Researchers | 3 |
Laws, Policies, & Programs
Assessments and Surveys
Eysenck Personality Inventory | 1 |
Maslach Burnout Inventory | 1 |
NEO Personality Inventory | 1 |
What Works Clearinghouse Rating
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian – Multivariate Behavioral Research, 2011
Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…
Descriptors: Simulation, Factor Analysis, Item Response Theory, Models
Magis, David; De Boeck, Paul – Multivariate Behavioral Research, 2011
We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…
Descriptors: Test Bias, Mathematics Tests, Identification, Sampling
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Schweizer, Karl – Multivariate Behavioral Research, 2011
The standardization of loadings gives a metric to the corresponding latent variable and thus scales the variance of this latent variable. By assigning an appropriately estimated weight to all the loadings on the same latent variable it can be achieved that the average squared loading is 1 as the result of standardization. As a consequence, there…
Descriptors: Structural Equation Models, Short Term Memory, Evaluation Methods, Comparative Analysis
Shiyko, Mariya P.; Ram, Nilam – Multivariate Behavioral Research, 2011
Researchers have been making use of ecological momentary assessment (EMA) and other study designs that sample feelings and behaviors in real time and in naturalistic settings to study temporal dynamics and contextual factors of a wide variety of psychological, physiological, and behavioral processes. As EMA designs become more widespread,…
Descriptors: Generalizability Theory, Intervals, Smoking, Self Efficacy
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L. – Multivariate Behavioral Research, 2011
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Descriptors: Simulation, Research Methodology, Factor Analysis, Item Response Theory
Fu, Zhi-Hui; Tao, Jian; Shi, Ning-Zhong; Zhang, Ming; Lin, Nan – Multivariate Behavioral Research, 2011
Multidimensional item response theory (MIRT) models can be applied to longitudinal educational surveys where a group of individuals are administered different tests over time with some common items. However, computational problems typically arise as the dimension of the latent variables increases. This is especially true when the latent variable…
Descriptors: Simulation, Foreign Countries, Longitudinal Studies, Item Response Theory
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Long, Jeffrey D.; Loeber, Rolf; Farrington, David P. – Multivariate Behavioral Research, 2009
Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…
Descriptors: Computation, Inferences, Crime, Models
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Cohen, Ayala; Nahum-Shani, Inbal; Doveh, Etti – Multivariate Behavioral Research, 2010
In their seminal paper, Edwards and Parry (1993) presented the polynomial regression as a better alternative to applying difference score in the study of congruence. Although this method is increasingly applied in congruence research, its complexity relative to other methods for assessing congruence (e.g., difference score methods) was one of the…
Descriptors: Behavioral Sciences, Evaluation Methods, Social Sciences, Social Support Groups
Konstantopoulos, Spyros – Multivariate Behavioral Research, 2008
Experiments that involve nested structures may assign treatment conditions either to entire groups (such as classrooms or schools) or individuals within groups (such as students). Although typically the interest in field experiments is in determining the significance of the overall treatment effect, it is equally important to examine the…
Descriptors: Evaluation Methods, Experiments, Statistical Analysis, Intervention
Choi, Jaehwa; Fan, Weihua; Hancock, Gregory R. – Multivariate Behavioral Research, 2009
This note suggests delta method implementations for deriving confidence intervals for a latent mean effect size measure for the case of 2 independent populations. A hypothetical kindergarten reading example using these implementations is provided, as is supporting LISREL syntax. (Contains 1 table.)
Descriptors: Intervals, Syntax, Effect Size, Evaluation Methods