NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
McGrath, Robert E.; Walters, Glenn D. – Psychological Methods, 2012
Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Marcus, Sue M.; Stuart, Elizabeth A.; Wang, Pei; Shadish, William R.; Steiner, Peter M. – Psychological Methods, 2012
Although randomized studies have high internal validity, generalizability of the estimated causal effect from randomized clinical trials to real-world clinical or educational practice may be limited. We consider the implication of randomized assignment to treatment, as compared with choice of preferred treatment as it occurs in real-world…
Descriptors: Educational Practices, Program Effectiveness, Validity, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Vrieze, Scott I. – Psychological Methods, 2012
This article reviews the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) in model selection and the appraisal of psychological theory. The focus is on latent variable models, given their growing use in theory testing and construction. Theoretical statistical results in regression are discussed, and more important…
Descriptors: Factor Analysis, Statistical Analysis, Psychology, Interviews
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J.; Sterba, Sonya K. – Psychological Methods, 2011
Previous research has compared methods of estimation for fitting multilevel models to binary data, but there are reasons to believe that the results will not always generalize to the ordinal case. This article thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data is justified and (b) which estimator to employ…
Descriptors: Item Response Theory, Models, Computation, Research
Peer reviewed Peer reviewed
Direct linkDirect link
Pan, Tianshu; Yin, Yue – Psychological Methods, 2012
In the discussion of mean square difference (MSD) and standard error of measurement (SEM), Barchard (2012) concluded that the MSD between 2 sets of test scores is greater than 2(SEM)[superscript 2] and SEM underestimates the score difference between 2 tests when the 2 tests are not parallel. This conclusion has limitations for 2 reasons. First,…
Descriptors: Error of Measurement, Geometric Concepts, Tests, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Drewes, Donald W. – Psychological Methods, 2009
A unifying theory of subject-centered scalability is offered that is grounded in structural true score modeling, is conceptually distinct from internal consistency and homogeneity as determined by item correlations, and is empirically confirmable. Scalability holds when item true scores are perfectly correlated but differ in their individual scale…
Descriptors: Rating Scales, Factor Analysis, True Scores, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Lijuan; Hamaker, Ellen; Bergeman, C. S. – Psychological Methods, 2012
Intra-individual variability over a short period of time may contain important information about how individuals differ from each other. In this article we begin by discussing diverse indicators for quantifying intra-individual variability and indicate their advantages and disadvantages. Then we propose an alternative method that models…
Descriptors: Evaluation Methods, Data Analysis, Individual Differences, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rubin, Donald B. – Psychological Methods, 2010
This article offers reflections on the development of the Rubin causal model (RCM), which were stimulated by the impressive discussions of the RCM and Campbell's superb contributions to the practical problems of drawing causal inferences written by Will Shadish (2010) and Steve West and Felix Thoemmes (2010). It is not a rejoinder in any real…
Descriptors: Causal Models, Research Methodology, Researchers, Profiles
Peer reviewed Peer reviewed
Direct linkDirect link
Kuiper, Rebecca M.; Hoijtink, Herbert – Psychological Methods, 2010
This article discusses comparisons of means using exploratory and confirmatory approaches. Three methods are discussed: hypothesis testing, model selection based on information criteria, and Bayesian model selection. Throughout the article, an example is used to illustrate and evaluate the two approaches and the three methods. We demonstrate that…
Descriptors: Models, Testing, Hypothesis Testing, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich – Psychological Methods, 2011
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Descriptors: Simulation, Educational Psychology, Social Sciences, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kemp, Simon; Grace, Randolph C. – Psychological Methods, 2010
Many theoretical constructs of interest to psychologists are multidimensional and derive from the integration of several input variables. We show that input variables that are measured on ordinal scales cannot be combined to produce a stable weakly ordered output variable that allows trading off the input variables. Instead a partial order is…
Descriptors: Psychologists, Psychology, Models, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Keselman, H. J.; Miller, Charles W.; Holland, Burt – Psychological Methods, 2011
There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise…
Descriptors: Validity, Statistical Significance, Probability, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Brusco, Michael; Steinley, Douglas – Psychological Methods, 2010
Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…
Descriptors: Psychology, Mathematical Models, Stimuli, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Cook, Thomas D.; Steiner, Peter M. – Psychological Methods, 2010
In this article, we note the many ontological, epistemological, and methodological similarities between how Campbell and Rubin conceptualize causation. We then explore 3 differences in their written emphases about individual case matching in observational studies. We contend that (a) Campbell places greater emphasis than Rubin on the special role…
Descriptors: Research Methodology, Pretests Posttests, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Previous Page | Next Page ยป
Pages: 1  |  2