NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
de Jong, Valentijn M. T.; Campbell, Harlan; Maxwell, Lauren; Jaenisch, Thomas; Gustafson, Paul; Debray, Thomas P. A. – Research Synthesis Methods, 2023
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate…
Descriptors: Classification, Meta Analysis, Bayesian Statistics, Evaluation Methods
Huan Liu – ProQuest LLC, 2024
In many large-scale testing programs, examinees are frequently categorized into different performance levels. These classifications are then used to make high-stakes decisions about examinees in contexts such as in licensure, certification, and educational assessments. Numerous approaches to estimating the consistency and accuracy of this…
Descriptors: Classification, Accuracy, Item Response Theory, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Seohee; Kim, Kyung Yong; Lee, Won-Chan – Journal of Educational Measurement, 2023
Multiple measures, such as multiple content domains or multiple types of performance, are used in various testing programs to classify examinees for screening or selection. Despite the popular usages of multiple measures, there is little research on classification consistency and accuracy of multiple measures. Accordingly, this study introduces an…
Descriptors: Testing, Computation, Classification, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Du; Susu Zhang – Journal of Educational and Behavioral Statistics, 2025
Item compromise has long posed challenges in educational measurement, jeopardizing both test validity and test security of continuous tests. Detecting compromised items is therefore crucial to address this concern. The present literature on compromised item detection reveals two notable gaps: First, the majority of existing methods are based upon…
Descriptors: Item Response Theory, Item Analysis, Bayesian Statistics, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Xieling Chen; Haoran Xie; Di Zou; Lingling Xu; Fu Lee Wang – Educational Technology & Society, 2025
In massive open online course (MOOC) environments, computer-based analysis of course reviews enables instructors and course designers to develop intervention strategies and improve instruction to support learners' learning. This study aimed to automatically and effectively identify learners' concerned topics within their written reviews. First, we…
Descriptors: Classification, MOOCs, Teaching Skills, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Stella Y.; Lee, Won-Chan – Journal of Educational Measurement, 2020
The current study aims to evaluate the performance of three non-IRT procedures (i.e., normal approximation, Livingston-Lewis, and compound multinomial) for estimating classification indices when the observed score distribution shows atypical patterns: (a) bimodality, (b) structural (i.e., systematic) bumpiness, or (c) structural zeros (i.e., no…
Descriptors: Classification, Accuracy, Scores, Cutting Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Klingbeil, David A.; Van Norman, Ethan R.; Osman, David J.; Berry-Corie, Kimberly; Carberry, Caroline K.; Kim, Jessica S. – Journal of Psychoeducational Assessment, 2023
Early identification of students needing additional support is a foundational component of Multi-Tiered Systems of Support (MTSS). Due to the resource-intensive nature of implementing MTSS, it is critical that universal screening procedures are maximally accurate and efficient. The purpose of this study was to compare the classification accuracy…
Descriptors: Comparative Analysis, Benchmarking, Evaluation Methods, Screening Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Furter, Robert T.; Dwyer, Andrew C. – Applied Measurement in Education, 2020
Maintaining equivalent performance standards across forms is a psychometric challenge exacerbated by small samples. In this study, the accuracy of two equating methods (Rasch anchored calibration and nominal weights mean) and four anchor item selection methods were investigated in the context of very small samples (N = 10). Overall, nominal…
Descriptors: Classification, Accuracy, Item Response Theory, Equated Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Jaeyong; Lee, Gyeong-Geon; Hong, Hun-Gi – Journal of Science Education and Technology, 2023
Here, we describe the development and validation of an automatic assessment system that examines students' hand-drawn visual representations in free-response items. The data were collected from 1,028 students in the second through 11th grades in South Korea using two items from the Test About Particles in a Gas questionnaire (Novick &…
Descriptors: Freehand Drawing, Evaluation Methods, Elementary School Students, Secondary School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mbaye, Baba – International Association for Development of the Information Society, 2018
The significant amount of information available on the web has led to difficulties for the learner to find useful information and relevant resources to carry out their training. The recommender systems have achieved significant success in the area of e-commerce, they still have difficulties in formulating relevant recommendations on e-learning…
Descriptors: Information Systems, Electronic Learning, Referral, Information Sources
Peer reviewed Peer reviewed
Direct linkDirect link
Cousineau, Denis; Laurencelle, Louis – Educational and Psychological Measurement, 2017
Assessing global interrater agreement is difficult as most published indices are affected by the presence of mixtures of agreements and disagreements. A previously proposed method was shown to be specifically sensitive to global agreement, excluding mixtures, but also negatively biased. Here, we propose two alternatives in an attempt to find what…
Descriptors: Interrater Reliability, Evaluation Methods, Statistical Bias, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Valtemir A.; Bittencourt, Ig Ibert; Maldonado, Jose C. – IEEE Transactions on Learning Technologies, 2019
Question classification is a key point in many applications, such as Question Answering (QA, e.g., Yahoo! Answers), Information Retrieval (IR, e.g., Google search engine), and E-learning systems (e.g., Bloom's tax. classifiers). This paper aims to carry out a systematic review of the literature on automatic question classifiers and the technology…
Descriptors: Questioning Techniques, Classification, Man Machine Systems, Information Retrieval
Previous Page | Next Page »
Pages: 1  |  2