NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 37 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Baumgartner, Michael; Ambühl, Mathias – Sociological Methods & Research, 2023
Consistency and coverage are two core parameters of model fit used by configurational comparative methods (CCMs) of causal inference. Among causal models that perform equally well in other respects (e.g., robustness or compliance with background theories), those with higher consistency and coverage are typically considered preferable. Finding the…
Descriptors: Causal Models, Evaluation Methods, Goodness of Fit, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Parkkinen, Veli-Pekka; Baumgartner, Michael – Sociological Methods & Research, 2023
In recent years, proponents of configurational comparative methods (CCMs) have advanced various dimensions of robustness as instrumental to model selection. But these robustness considerations have not led to computable robustness measures, and they have typically been applied to the analysis of real-life data with unknown underlying causal…
Descriptors: Robustness (Statistics), Comparative Analysis, Causal Models, Models
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2021
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes and other covariates as closely as possible. A critical feature of the original…
Descriptors: Evaluation Methods, Comparative Analysis, Regression (Statistics), Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Weidlich, Joshua; Gaševic, Dragan; Drachsler, Hendrik – Journal of Learning Analytics, 2022
As a research field geared toward understanding and improving learning, Learning Analytics (LA) must be able to provide empirical support for causal claims. However, as a highly applied field, tightly controlled randomized experiments are not always feasible nor desirable. Instead, researchers often rely on observational data, based on which they…
Descriptors: Causal Models, Inferences, Learning Analytics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Piepho, Hans-Peter; Madden, Laurence V. – Research Synthesis Methods, 2022
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One…
Descriptors: Medical Research, Meta Analysis, Networks, Drug Therapy
Xu Qin; Fan Yang – Grantee Submission, 2022
Causal inference regarding a hypothesized mediation mechanism relies on the assumptions that there are no omitted pretreatment confounders (i.e., confounders preceding the treatment) of the treatment-mediator, treatment-outcome, and mediator-outcome relationships, and there are no posttreatment confounders (i.e., confounders affected by the…
Descriptors: Simulation, Correlation, Inferences, Attribution Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Finch, Holmes – Practical Assessment, Research & Evaluation, 2022
Researchers in many disciplines work with ranking data. This data type is unique in that it is often deterministic in nature (the ranks of items "k"-1 determine the rank of item "k"), and the difference in a pair of rank scores separated by "k" units is equivalent regardless of the actual values of the two ranks in…
Descriptors: Data Analysis, Statistical Inference, Models, College Faculty
Peer reviewed Peer reviewed
Direct linkDirect link
Bahramlou, Khosro; Esmaeili, Adel – Journal of Psycholinguistic Research, 2019
The study aimed to explore the effect of group dynamic assessment on word learning through lexical inferencing and to compare it to that of vocabulary enhancement exercises. Through purposive sampling, 45 intermediate EFL learners were selected as participants and randomly assigned to three groups. The participants read six texts over a 6-day…
Descriptors: Vocabulary Development, Inferences, English (Second Language), Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi – Educational and Psychological Measurement, 2017
An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…
Descriptors: Hypothesis Testing, Models, Observation, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khamboonruang, Apichat – rEFLections, 2022
Although much research has compared the functioning between analytic and holistic rating scales, little research has compared the functioning of binary rating scales with other types of rating scales. This quantitative study set out to preliminarily and comparatively validate binary and analytic rating scales intended for use in formative…
Descriptors: Writing Evaluation, Evaluation Methods, Second Language Learning, Second Language Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Wing, Coady; Bello-Gomez, Ricardo A. – American Journal of Evaluation, 2018
Treatment effect estimates from a "regression discontinuity design" (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the…
Descriptors: Regression (Statistics), Research Design, Validity, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Yongnam; Steiner, Peter – Educational Psychologist, 2016
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Descriptors: Quasiexperimental Design, Causal Models, Statistical Inference, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin – Journal of Research on Educational Effectiveness, 2017
The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…
Descriptors: Evaluation Research, Program Evaluation, Welfare Services, Employment
Previous Page | Next Page »
Pages: 1  |  2  |  3