Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 29 |
Descriptor
Bayesian Statistics | 33 |
Computation | 33 |
Evaluation Methods | 33 |
Models | 15 |
Simulation | 11 |
Data Analysis | 10 |
Comparative Analysis | 8 |
Item Response Theory | 8 |
Accuracy | 7 |
Monte Carlo Methods | 7 |
Markov Processes | 5 |
More ▼ |
Source
Author
Lee, Michael D. | 2 |
Lee, Sik-Yum | 2 |
Alcala-Quintana, Rocio | 1 |
Ansari, Asim | 1 |
Augustin Kelava | 1 |
Bajari, Patrick | 1 |
Barnes, Tiffany, Ed. | 1 |
Brooks, Christopher | 1 |
Carlton, Matthew A. | 1 |
Chen, Lisue | 1 |
Chun Wang | 1 |
More ▼ |
Publication Type
Journal Articles | 28 |
Reports - Research | 22 |
Reports - Evaluative | 5 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 2 |
Collected Works - Proceedings | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Location
China | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Sangbaek Park – ProQuest LLC, 2024
This dissertation used synthetic datasets, semi-synthetic datasets, and a real-world dataset from an educational intervention to compare the performance of 15 machine learning and multiple imputation methods to estimate the individual treatment effect (ITE). In addition, it examined the performance of five evaluation metrics that can be used to…
Descriptors: Artificial Intelligence, Computation, Evaluation Methods, Bayesian Statistics

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Pek, Jolynn; Van Zandt, Trisha – Psychology Learning and Teaching, 2020
Statistical thinking is essential to understanding the nature of scientific results as a consumer. Statistical thinking also facilitates thinking like a scientist. Instead of emphasizing a "correct" procedure for data analysis and its outcome, statistical thinking focuses on the process of data analysis. This article reviews frequentist…
Descriptors: Bayesian Statistics, Thinking Skills, Data Analysis, Evaluation Methods
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Wilcox, Rand R.; Serang, Sarfaraz – Educational and Psychological Measurement, 2017
The article provides perspectives on p values, null hypothesis testing, and alternative techniques in light of modern robust statistical methods. Null hypothesis testing and "p" values can provide useful information provided they are interpreted in a sound manner, which includes taking into account insights and advances that have…
Descriptors: Hypothesis Testing, Bayesian Statistics, Computation, Effect Size
Gardner, Josh; Brooks, Christopher – Journal of Learning Analytics, 2018
Model evaluation -- the process of making inferences about the performance of predictive models -- is a critical component of predictive modelling research in learning analytics. We survey the state of the practice with respect to model evaluation in learning analytics, which overwhelmingly uses only naïve methods for model evaluation or…
Descriptors: Prediction, Models, Evaluation, Evaluation Methods
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Martori, Francesc; Cuadros, Jordi; González-Sabaté, Lucinio – International Educational Data Mining Society, 2015
Student modeling can help guide the behavior of a cognitive tutor system and provide insight to researchers on understanding how students learn. In this context, Bayesian Knowledge Tracing (BKT) is one of the most popular knowledge inference models due to its predictive accuracy, interpretability and ability to infer student knowledge. However,…
Descriptors: Bayesian Statistics, Inferences, Prediction, Accuracy
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S. – Educational Research and Reviews, 2016
The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…
Descriptors: Maximum Likelihood Statistics, Computation, Item Response Theory, Test Items
Kruschke, John K. – Journal of Experimental Psychology: General, 2013
Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional "t" tests) when certainty in the estimate is…
Descriptors: Bayesian Statistics, Computation, Evaluation Methods, Computer Software
Fong, Duncan K. H.; Ebbes, Peter; DeSarbo, Wayne S. – Psychometrika, 2012
Multiple regression is frequently used across the various social sciences to analyze cross-sectional data. However, it can often times be challenging to justify the assumption of common regression coefficients across all respondents. This manuscript presents a heterogeneous Bayesian regression model that enables the estimation of…
Descriptors: Monte Carlo Methods, Social Sciences, Computation, Models