Publication Date
In 2025 | 0 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 53 |
Descriptor
Computation | 60 |
Data Analysis | 60 |
Evaluation Methods | 60 |
Models | 21 |
Item Response Theory | 13 |
Simulation | 12 |
Foreign Countries | 11 |
Bayesian Statistics | 10 |
Comparative Analysis | 10 |
Data Collection | 10 |
Sampling | 10 |
More ▼ |
Source
Author
Chiang, Hanley | 2 |
Gill, Brian | 2 |
Lipscomb, Stephen | 2 |
Amchin, S. | 1 |
Anderson, Kaitlin | 1 |
André O. Hudson | 1 |
Avi Feller | 1 |
Balogh, R. | 1 |
Bandalos, Deborah | 1 |
Barnes, Tiffany, Ed. | 1 |
Bauer, Daniel J. | 1 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 2 |
Students | 1 |
Teachers | 1 |
Location
Australia | 3 |
Estonia | 2 |
New Zealand | 2 |
Pennsylvania | 2 |
South Korea | 2 |
Canada | 1 |
China | 1 |
Cyprus | 1 |
Finland | 1 |
France | 1 |
Germany | 1 |
More ▼ |
Laws, Policies, & Programs
Individuals with Disabilities… | 1 |
Individuals with Disabilities… | 1 |
Assessments and Surveys
National Household Education… | 1 |
Program for International… | 1 |
Schools and Staffing Survey… | 1 |
What Works Clearinghouse Rating
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Key Student Nodes Mining in the In-Class Social Network Based on Combined Weighted GRA-TOPSIS Method
Shou, Zhaoyu; Tang, Mengxue; Wen, Hui; Liu, Jinghua; Mo, Jianwen; Zhang, Huibing – International Journal of Information and Communication Technology Education, 2023
In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among…
Descriptors: Social Networks, Algorithms, Network Analysis, Databases
Yucesoy-Ozkan, Serife; Rakap, Salih; Gulboy, Emrah – British Journal of Special Education, 2020
The purpose of this study was to compare 12 commonly-used nonoverlap methods with each other and with the results of visual analysis. Data were obtained from 25 studies focused on embedded instruction and schema-based instruction and included a total of 101 graphs. Treatment effect estimates using 12 nonoverlap methods were calculated for each…
Descriptors: Effect Size, Graphs, Data Analysis, Computation

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Hyunsuk Han – ProQuest LLC, 2018
In Huggins-Manley & Han (2017), it was shown that WLSMV global model fit indices used in structural equating modeling practice are sensitive to person parameter estimate RMSE and item difficulty parameter estimate RMSE that results from local dependence in 2-PL IRT models, particularly when conditioning on number of test items and sample size.…
Descriptors: Models, Statistical Analysis, Item Response Theory, Evaluation Methods
Danial Hooshyar; Nour El Mawas; Yeongwook Yang – Knowledge Management & E-Learning, 2024
The use of learner modelling approaches is critical for providing adaptive support in educational computer games, with predictive learner modelling being among the key approaches. While adaptive supports have been shown to improve the effectiveness of educational games, improperly customized support can have negative effects on learning outcomes.…
Descriptors: Artificial Intelligence, Course Content, Tests, Scores
Pek, Jolynn; Van Zandt, Trisha – Psychology Learning and Teaching, 2020
Statistical thinking is essential to understanding the nature of scientific results as a consumer. Statistical thinking also facilitates thinking like a scientist. Instead of emphasizing a "correct" procedure for data analysis and its outcome, statistical thinking focuses on the process of data analysis. This article reviews frequentist…
Descriptors: Bayesian Statistics, Thinking Skills, Data Analysis, Evaluation Methods
Gardner, Josh; Brooks, Christopher – Journal of Learning Analytics, 2018
Model evaluation -- the process of making inferences about the performance of predictive models -- is a critical component of predictive modelling research in learning analytics. We survey the state of the practice with respect to model evaluation in learning analytics, which overwhelmingly uses only naïve methods for model evaluation or…
Descriptors: Prediction, Models, Evaluation, Evaluation Methods
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Capuano, Nicola; Loia, Vincenzo; Orciuoli, Francesco – IEEE Transactions on Learning Technologies, 2017
Massive Open Online Courses (MOOCs) are becoming an increasingly popular choice for education but, to reach their full extent, they require the resolution of new issues like assessing students at scale. A feasible approach to tackle this problem is peer assessment, in which students also play the role of assessor for assignments submitted by…
Descriptors: Participative Decision Making, Models, Peer Evaluation, Online Courses
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Brandriet, Alexandra; Holme, Thomas – Journal of Chemical Education, 2015
As part of the ACS Examinations Institute (ACS-EI) national norming process, student performance data sets are collected from professors at colleges and universities from around the United States. Because the data sets are collected on a volunteer basis, the ACS-EI often receives data sets with only students' total scores and without the students'…
Descriptors: Chemistry, Data Analysis, Error of Measurement, Science Tests
Kruschke, John K. – Journal of Experimental Psychology: General, 2013
Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional "t" tests) when certainty in the estimate is…
Descriptors: Bayesian Statistics, Computation, Evaluation Methods, Computer Software