NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Williams, Ryan T. – ProQuest LLC, 2012
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
Descriptors: Multiple Regression Analysis, Meta Analysis, Evaluation Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Eun Sook; Kwok, Oi-man; Yoon, Myeongsun – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Testing factorial invariance has recently gained more attention in different social science disciplines. Nevertheless, when examining factorial invariance, it is generally assumed that the observations are independent of each other, which might not be always true. In this study, we examined the impact of testing factorial invariance in multilevel…
Descriptors: Monte Carlo Methods, Testing, Social Science Research, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Tay, Louis; Drasgow, Fritz – Educational and Psychological Measurement, 2012
Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…
Descriptors: Test Length, Monte Carlo Methods, Goodness of Fit, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa – Applied Psychological Measurement, 2012
Rasch used a Poisson model to analyze errors and speed in reading tests. An important property of the Poisson distribution is that the mean and variance are equal. However, in social science research, it is very common for the variance to be greater than the mean (i.e., the data are overdispersed). This study embeds the Rasch model within an…
Descriptors: Social Science Research, Markov Processes, Reading Tests, Social Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Murayama, Kou; Sakaki, Michiko; Yan, Veronica X.; Smith, Garry M. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are…
Descriptors: Metacognition, Memory, Accuracy, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gardenier, George H.; Gui, Feng; Demas, James N. – Journal of Chemical Education, 2011
Complex error propagation is reduced to formula and data entry into a Mathcad worksheet or an Excel spreadsheet. The Mathcad routine uses both symbolic calculus analysis and Monte Carlo methods to propagate errors in a formula of up to four variables. Graphical output is used to clarify the contributions to the final error of each of the…
Descriptors: Monte Carlo Methods, Computer Software, Calculus, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Manolov, Rumen; Solanas, Antonio; Bulte, Isis; Onghena, Patrick – Journal of Experimental Education, 2010
This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. To obtain information about each possible data division, the authors carried out a conditional Monte Carlo simulation with 100,000 samples for each…
Descriptors: Monte Carlo Methods, Effect Size, Simulation, Evaluation Methods
Garrett, Phyllis – ProQuest LLC, 2009
The use of polytomous items in assessments has increased over the years, and as a result, the validity of these assessments has been a concern. Differential item functioning (DIF) and missing data are two factors that may adversely affect assessment validity. Both factors have been studied separately, but DIF and missing data are likely to occur…
Descriptors: Sample Size, Monte Carlo Methods, Test Validity, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Enders, Craig K.; Tofighi, Davood – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The purpose of this study was to examine the impact of misspecifying a growth mixture model (GMM) by assuming that Level-1 residual variances are constant across classes, when they do, in fact, vary in each subpopulation. Misspecification produced bias in the within-class growth trajectories and variance components, and estimates were…
Descriptors: Structural Equation Models, Computation, Monte Carlo Methods, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Murphy, Daniel L.; Pituch, Keenan A. – Journal of Experimental Education, 2009
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Descriptors: Sample Size, Computation, Evaluation Methods, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Yoo, Jin Eun – Educational and Psychological Measurement, 2009
This Monte Carlo study investigates the beneficiary effect of including auxiliary variables during estimation of confirmatory factor analysis models with multiple imputation. Specifically, it examines the influence of sample size, missing rates, missingness mechanism combinations, missingness types (linear or convex), and the absence or presence…
Descriptors: Monte Carlo Methods, Research Methodology, Test Validity, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wells, Craig S.; Bolt, Daniel M. – Applied Measurement in Education, 2008
Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…
Descriptors: Test Length, Test Items, Monte Carlo Methods, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kromrey, Jeffrey D.; Rendina-Gobioff, Gianna – Educational and Psychological Measurement, 2006
The performance of methods for detecting publication bias in meta-analysis was evaluated using Monte Carlo methods. Four methods of bias detection were investigated: Begg's rank correlation, Egger's regression, funnel plot regression, and trim and fill. Five factors were included in the simulation design: number of primary studies in each…
Descriptors: Comparative Analysis, Meta Analysis, Monte Carlo Methods, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article proposes a new approach to the statistical analysis of pairwisepresent covariance structure data. The estimator is based on maximizing the complete data likelihood function, and the associated test statistic and standard errors are corrected for misspecification using Satorra-Bentler corrections. A Monte Carlo study was conducted to…
Descriptors: Evaluation Methods, Maximum Likelihood Statistics, Statistical Analysis, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1  |  2