Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 6 |
Descriptor
Causal Models | 6 |
Error of Measurement | 6 |
Evaluation Methods | 6 |
Simulation | 2 |
Statistical Bias | 2 |
Statistical Inference | 2 |
Structural Equation Models | 2 |
Weighted Scores | 2 |
Accuracy | 1 |
Algorithms | 1 |
Artificial Intelligence | 1 |
More ▼ |
Author
Avi Feller | 1 |
Ben-Michael, Eli | 1 |
Chris Holmes | 1 |
Dorans, Neil J. | 1 |
Feller, Avi | 1 |
Ke-Hai Yuan | 1 |
Lijuan Wang | 1 |
Mapuranga, Raymond | 1 |
Middleton, Kyndra | 1 |
Oscar Clivio | 1 |
Rothstein, Jesse | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 4 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2022
Staggered adoption of policies by different units at different times creates promising opportunities for observational causal inference. Estimation remains challenging, however, and common regression methods can give misleading results. A promising alternative is the synthetic control method (SCM), which finds a weighted average of control units…
Descriptors: Causal Models, Statistical Inference, Computation, Evaluation Methods
Ke-Hai Yuan; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models…
Descriptors: Structural Equation Models, Path Analysis, Weighted Scores, Comparative Testing
Mapuranga, Raymond; Dorans, Neil J.; Middleton, Kyndra – ETS Research Report Series, 2008
In many practical settings, essentially the same differential item functioning (DIF) procedures have been in use since the late 1980s. Since then, examinee populations have become more heterogeneous, and tests have included more polytomously scored items. This paper summarizes and classifies new DIF methods and procedures that have appeared since…
Descriptors: Test Bias, Educational Development, Evaluation Methods, Statistical Analysis