NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
Individuals with Disabilities…8
What Works Clearinghouse Rating
Showing 1 to 15 of 59 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stefanie A. Wind; Benjamin Lugu – Applied Measurement in Education, 2024
Researchers who use measurement models for evaluation purposes often select models with stringent requirements, such as Rasch models, which are parametric. Mokken Scale Analysis (MSA) offers a theory-driven nonparametric modeling approach that may be more appropriate for some measurement applications. Researchers have discussed using MSA as a…
Descriptors: Item Response Theory, Data Analysis, Simulation, Nonparametric Statistics
Ben Stenhaug; Ben Domingue – Grantee Submission, 2022
The fit of an item response model is typically conceptualized as whether a given model could have generated the data. We advocate for an alternative view of fit, "predictive fit", based on the model's ability to predict new data. We derive two predictive fit metrics for item response models that assess how well an estimated item response…
Descriptors: Goodness of Fit, Item Response Theory, Prediction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Feuerstahler, Leah; Wilson, Mark – Journal of Educational Measurement, 2019
Scores estimated from multidimensional item response theory (IRT) models are not necessarily comparable across dimensions. In this article, the concept of aligned dimensions is formalized in the context of Rasch models, and two methods are described--delta dimensional alignment (DDA) and logistic regression alignment (LRA)--to transform estimated…
Descriptors: Item Response Theory, Models, Scores, Comparative Analysis
Hyunsuk Han – ProQuest LLC, 2018
In Huggins-Manley & Han (2017), it was shown that WLSMV global model fit indices used in structural equating modeling practice are sensitive to person parameter estimate RMSE and item difficulty parameter estimate RMSE that results from local dependence in 2-PL IRT models, particularly when conditioning on number of test items and sample size.…
Descriptors: Models, Statistical Analysis, Item Response Theory, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Provasnik, Stephen; Dogan, Enis; Erberber, Ebru; Zheng, Xiaying – National Center for Education Statistics, 2020
Large-scale assessment programs, such as the Trends in International Mathematics and Science Study (TIMSS) and the Progress in International Reading Literacy Study (PIRLS), employ item response theory (IRT) and marginal estimation methods to estimate student proficiency in specific subjects such as mathematics, science, or reading. Each of these…
Descriptors: Student Evaluation, Evaluation Methods, Academic Achievement, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Guo, Rui; Zheng, Yi; Chang, Hua-Hua – Journal of Educational Measurement, 2015
An important assumption of item response theory is item parameter invariance. Sometimes, however, item parameters are not invariant across different test administrations due to factors other than sampling error; this phenomenon is termed item parameter drift. Several methods have been developed to detect drifted items. However, most of the…
Descriptors: Item Response Theory, Test Items, Evaluation Methods, Equated Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yu, Chong Ho; Douglas, Samantha; Lee, Anna; An, Min – Practical Assessment, Research & Evaluation, 2016
This paper aims to illustrate how data visualization could be utilized to identify errors prior to modeling, using an example with multi-dimensional item response theory (MIRT). MIRT combines item response theory and factor analysis to identify a psychometric model that investigates two or more latent traits. While it may seem convenient to…
Descriptors: Visualization, Item Response Theory, Sample Size, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Minji K.; Sweeney, Kevin; Melican, Gerald J. – Educational Assessment, 2017
This study investigates the relationships among factor correlations, inter-item correlations, and the reliability estimates of subscores, providing a guideline with respect to psychometric properties of useful subscores. In addition, it compares subscore estimation methods with respect to reliability and distinctness. The subscore estimation…
Descriptors: Scores, Test Construction, Test Reliability, Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Brandriet, Alexandra; Holme, Thomas – Journal of Chemical Education, 2015
As part of the ACS Examinations Institute (ACS-EI) national norming process, student performance data sets are collected from professors at colleges and universities from around the United States. Because the data sets are collected on a volunteer basis, the ACS-EI often receives data sets with only students' total scores and without the students'…
Descriptors: Chemistry, Data Analysis, Error of Measurement, Science Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Wilson, Mark; Gochyyev, Perman; Scalise, Kathleen – Journal of Educational Measurement, 2017
This article summarizes assessment of cognitive skills through collaborative tasks, using field test results from the Assessment and Teaching of 21st Century Skills (ATC21S) project. This project, sponsored by Cisco, Intel, and Microsoft, aims to help educators around the world enable students with the skills to succeed in future career and…
Descriptors: Cognitive Ability, Thinking Skills, Evaluation Methods, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Weirich, Sebastian; Haag, Nicole; Hecht, Martin; Böhme, Katrin; Siegle, Thilo; Lüdtke, Oliver – Large-scale Assessments in Education, 2014
Background: In order to measure the proficiency of person populations in various domains, large-scale assessments often use marginal maximum likelihood IRT models where person proficiency is modelled as a random variable. Thus, the model does not provide proficiency estimates for any single person. A popular approach to derive these proficiency…
Descriptors: Measurement, Item Response Theory, Measurement Techniques, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Köhler, Carmen; Pohl, Steffi; Carstensen, Claus H. – Educational and Psychological Measurement, 2015
When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically…
Descriptors: Competence, Tests, Evaluation Methods, Adults
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J.; Sterba, Sonya K. – Psychological Methods, 2011
Previous research has compared methods of estimation for fitting multilevel models to binary data, but there are reasons to believe that the results will not always generalize to the ordinal case. This article thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data is justified and (b) which estimator to employ…
Descriptors: Item Response Theory, Models, Computation, Research
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4