Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 33 |
Descriptor
Data Analysis | 37 |
Evaluation Methods | 37 |
Prediction | 37 |
Models | 18 |
Foreign Countries | 12 |
Academic Achievement | 10 |
Learner Engagement | 10 |
Online Courses | 10 |
Teaching Methods | 10 |
College Students | 9 |
Comparative Analysis | 9 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Administrators | 1 |
Practitioners | 1 |
Location
Australia | 3 |
Germany | 3 |
China | 2 |
Italy | 2 |
Pakistan | 2 |
Turkey | 2 |
United Kingdom | 2 |
United Kingdom (England) | 2 |
United States | 2 |
Afghanistan | 1 |
Asia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 4 |
Early Childhood Longitudinal… | 2 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Caspari-Sadeghi, Sima – Cogent Education, 2023
Data-driven decision-making and data-intensive research are becoming prevalent in many sectors of modern society, i.e. healthcare, politics, business, and entertainment. During the COVID-19 pandemic, huge amounts of educational data and new types of evidence were generated through various online platforms, digital tools, and communication…
Descriptors: Learning Analytics, Data Analysis, Higher Education, Feedback (Response)
Zafar, Natasha; Asadullah, Muhammad Ali; Haq, Muhammad Zia Ul; Siddiquei, Ahmad Nabeel; Nazir, Sajjad – European Journal of Training and Development, 2023
Purpose: The firms use training evaluation practices (TEPs) to determine the return of billions of dollars spent on employee training and development activities. The firms need to modernize the set of TEPs for evidence-based workforce management decisions. This study aims to examine a mediation mechanism to explain how human resource (HR)…
Descriptors: Foreign Countries, Human Resources, Labor Force Development, Design
Anthony Gambino – Society for Research on Educational Effectiveness, 2021
Analysis of symmetrically predicted endogenous subgroups (ASPES) is an approach to assessing heterogeneity in an ITT effect from a randomized experiment when an intermediate variable (one that is measured after random assignment and before outcomes) is hypothesized to be related to the ITT effect, but is only measured in one group. For example,…
Descriptors: Randomized Controlled Trials, Prediction, Program Evaluation, Credibility
Kaplan, David; Chen, Jianshen; Lyu, Weicong; Yavuz, Sinan – Large-scale Assessments in Education, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
David Kaplan; Jianshen Chen; Weicong Lyu; Sinan Yavuz – Grantee Submission, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
Ben Stenhaug; Ben Domingue – Grantee Submission, 2022
The fit of an item response model is typically conceptualized as whether a given model could have generated the data. We advocate for an alternative view of fit, "predictive fit", based on the model's ability to predict new data. We derive two predictive fit metrics for item response models that assess how well an estimated item response…
Descriptors: Goodness of Fit, Item Response Theory, Prediction, Models
Singer, Gonen; Golan, Maya; Rabin, Neta; Kleper, Dvir – European Journal of Engineering Education, 2020
The purpose of this study is to evaluate how learning disabilities (LDs), in combination with accommodations, affect the performance of a decision-tree to predict the stability of academic behaviour of undergraduate engineering students. Additionally, this study presents several examples to illustrate how a college could use the resultant model to…
Descriptors: Learning Disabilities, Academic Accommodations (Disabilities), Undergraduate Students, Engineering Education
Bulathwela, Sahan; Pérez-Ortiz, María; Lipani, Aldo; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2020
The explosion of Open Educational Resources (OERs) in the recent years creates the demand for scalable, automatic approaches to process and evaluate OERs, with the end goal of identifying and recommending the most suitable educational materials for learners. We focus on building models to find the characteristics and features involved in…
Descriptors: Prediction, Open Educational Resources, Learner Engagement, Video Technology
Raj, Gaurav; Mahajan, Manish; Singh, Dheerendra – International Journal of Web-Based Learning and Teaching Technologies, 2020
In secure web application development, the role of web services will not continue if it is not trustworthy. Retaining customers with applications is one of the major challenges if the services are not reliable and trustworthy. This article proposes a trust evaluation and decision model where the authors have defined indirect attribute, trust,…
Descriptors: Trust (Psychology), Models, Decision Making, Computer Software
Gardner, Josh; Brooks, Christopher – Journal of Learning Analytics, 2018
Model evaluation -- the process of making inferences about the performance of predictive models -- is a critical component of predictive modelling research in learning analytics. We survey the state of the practice with respect to model evaluation in learning analytics, which overwhelmingly uses only naïve methods for model evaluation or…
Descriptors: Prediction, Models, Evaluation, Evaluation Methods
Peck, Laura R. – American Journal of Evaluation, 2015
Several analytic strategies exist for opening up the "black box" to reveal more about what drives policy and program impacts. This article focuses on one of these strategies: the Analysis of Symmetrically-Predicted Endogenous Subgroups (ASPES). ASPES uses exogenous baseline data to identify endogenously-defined subgroups, keeping the…
Descriptors: Program Evaluation, Credibility, Prediction, Sample Size
Karimi, Hamid; Derr, Tyler; Huang, Jiangtao; Tang, Jiliang – International Educational Data Mining Society, 2020
Online learning has attracted a large number of participants and is increasingly becoming very popular. However, the completion rates for online learning are notoriously low. Further, unlike traditional education systems, teachers, if any, are unable to comprehensively evaluate the learning gain of each student through the online learning…
Descriptors: Online Courses, Academic Achievement, Prediction, Teaching Methods
Sales, Adam C.; Botelho, Anthony; Patikorn, Thanaporn; Heffernan, Neil T. – International Educational Data Mining Society, 2018
Randomized A/B tests in educational software are not run in a vacuum: often, reams of historical data are available alongside the data from a randomized trial. This paper proposes a method to use this historical data--often highdimensional and longitudinal--to improve causal estimates from A/B tests. The method proceeds in two steps: first, fit a…
Descriptors: Courseware, Data Analysis, Causal Models, Prediction
Johnson, Reid A. – ProQuest LLC, 2016
Data science is a broad, interdisciplinary field concerned with the extraction of knowledge or insights from data, with the classification of data as a core, fundamental task. One of the most persistent challenges faced when performing classification is the class imbalance problem. Class imbalance refers to when the frequency with which each class…
Descriptors: Comparative Analysis, Information Science, Technology, Classification