NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Individuals with Disabilities…1
What Works Clearinghouse Rating
Showing 1 to 15 of 144 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jason A. Schoeneberger; Christopher Rhoads – American Journal of Evaluation, 2025
Regression discontinuity (RD) designs are increasingly used for causal evaluations. However, the literature contains little guidance for conducting a moderation analysis within an RDD context. The current article focuses on moderation with a single binary variable. A simulation study compares: (1) different bandwidth selectors and (2) local…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ismail Cuhadar; Ömür Kaya Kalkan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Simulation studies are needed to investigate how many score categories are sufficient to treat ordered categorical data as continuous, particularly for bifactor models. The current simulation study aims to address such needs by investigating the performance of estimation methods in the bifactor models with ordered categorical data. Results support…
Descriptors: Predictor Variables, Structural Equation Models, Sample Size, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Nazanin Nezami; Parian Haghighat; Denisa Gándara; Hadis Anahideh – Grantee Submission, 2024
The education sector has been quick to recognize the power of predictive analytics to enhance student success rates. However, there are challenges to widespread adoption, including the lack of accessibility and the potential perpetuation of inequalities. These challenges present in different stages of modeling, including data preparation, model…
Descriptors: Evaluation Methods, College Students, Success, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Caroline F. Rowland; Amy Bidgood; Gary Jones; Andrew Jessop; Paula Stinson; Julian M. Pine; Samantha Durrant; Michelle S. Peter – Language Learning, 2025
A strong predictor of children's language is performance on non-word repetition (NWR) tasks. However, the basis of this relationship remains unknown. Some suggest that NWR tasks measure phonological working memory, which then affects language growth. Others argue that children's knowledge of language/language experience affects NWR performance. A…
Descriptors: Vocabulary Development, Comparative Analysis, Computational Linguistics, Language Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Ashima Kukkar; Rajni Mohana; Aman Sharma; Anand Nayyar – Education and Information Technologies, 2024
In the profession of education, predicting students' academic success is an essential responsibility. This study introduces a novel methodology for predicting students' pass or fail outcome in certain courses. The system utilises academic, demographic, emotional, and VLE sequence information of students. Traditional prediction methods often…
Descriptors: Predictor Variables, Academic Achievement, Pass Fail Grading, Long Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Göktepe Yildiz, Sevda; Göktepe Körpeoglu, Seda – Education and Information Technologies, 2023
Traditionally, students' various educational characteristics are evaluated according to the grades they get or the results of their answers to the scales. There are some limitations in making an evaluation based on the results. The fuzzy logic approach, which tries to eliminate these limitations, has recently been used in the field of education.…
Descriptors: Foreign Countries, Students, Student Attitudes, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Käser, Tanja; Schwartz, Daniel L. – International Journal of Artificial Intelligence in Education, 2020
Modeling and predicting student learning in computer-based environments often relies solely on sequences of accuracy data. Previous research suggests that it does not only matter what we learn, but also how we learn. The detection and analysis of learning behavior becomes especially important, when dealing with open-ended exploration environments,…
Descriptors: Inquiry, Learning Strategies, Outcomes of Education, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Yeonggwang; Anand, Supraja; Ozmeral, Erol J.; Shrivastav, Rahul; Eddins, David A. – Journal of Speech, Language, and Hearing Research, 2022
Purpose: Vocal roughness is often present in many voice disorders but the assessment of roughness mainly depends on the subjective auditory-perceptual evaluation and lacks acoustic correlates. This study aimed to apply the concept of roughness in general sound quality perception to vocal roughness assessment and to characterize the relationship…
Descriptors: Voice Disorders, Evaluation Methods, Auditory Perception, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Jessica; Brunner, Martin; Keller, Ulrich; Fischbach, Antoine – Educational Assessment, Evaluation and Accountability, 2019
Value-added (VA) modeling can be used to quantify teacher and school effectiveness by estimating the effect of pedagogical actions on students' achievement. It is gaining increasing importance in educational evaluation, teacher accountability, and high-stakes decisions. We analyzed 370 empirical studies on VA modeling, focusing on modeling and…
Descriptors: Value Added Models, Teacher Effectiveness, School Effectiveness, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Robert Meyer; Sara Hu; Michael Christian – Society for Research on Educational Effectiveness, 2022
This paper develops models to measure growth in student achievement with a focus on the possibility of differential growth in achievement for low and high-achieving students. We consider a gap-closing model that evaluates the degree to which students in a target group -- students in the bottom quartile of measured achievement -- perform better…
Descriptors: Academic Achievement, Achievement Gap, Models, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Danial Hooshyar; Nour El Mawas; Yeongwook Yang – Knowledge Management & E-Learning, 2024
The use of learner modelling approaches is critical for providing adaptive support in educational computer games, with predictive learner modelling being among the key approaches. While adaptive supports have been shown to improve the effectiveness of educational games, improperly customized support can have negative effects on learning outcomes.…
Descriptors: Artificial Intelligence, Course Content, Tests, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Tirado, Andrea; Shneyderman, Aleksandr – Research Services, Miami-Dade County Public Schools, 2020
This Research Brief describes a model developed as an alternative method for making ESOL exit decisions in 2019-2020. Given the cancellation of the 2019-2020 Statewide student assessment, FSA ELA results which are used as one of the two major components for making ESOL exit decisions will not be available, and an alternative method is needed. This…
Descriptors: English (Second Language), English Language Learners, Models, Decision Making
Middleton, Joel A.; Scott, Marc A.; Diakow, Ronli; Hill, Jennifer L. – Grantee Submission, 2016
In the analysis of causal effects in non-experimental studies, conditioning on observable covariates is one way to try to reduce unobserved confounder bias. However, a developing literature has shown that conditioning on certain covariates may increase bias, and the mechanisms underlying this phenomenon have not been fully explored. We add to the…
Descriptors: Statistical Bias, Identification, Evaluation Methods, Measurement Techniques
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10