Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 74 |
Descriptor
Evaluation Methods | 95 |
Probability | 95 |
Models | 75 |
Statistical Analysis | 21 |
Computation | 17 |
Prediction | 15 |
Comparative Analysis | 14 |
Student Evaluation | 14 |
Decision Making | 13 |
Item Response Theory | 13 |
Simulation | 13 |
More ▼ |
Source
Author
Chater, Nick | 2 |
Lee, Michael D. | 2 |
Wagenmakers, Eric-Jan | 2 |
Xu, Fei | 2 |
Alvarado, Jesus M. | 1 |
Amemiya, Yasuo | 1 |
Andjelic, Svetlana | 1 |
Andrews, Mark | 1 |
Armstrong, Ronald D. | 1 |
Badii, Atta | 1 |
Baker, Ryan S. | 1 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 5 |
Practitioners | 2 |
Location
Germany | 3 |
Italy | 3 |
Australia | 2 |
Denmark | 2 |
Estonia | 2 |
New Zealand | 2 |
Norway | 2 |
Pakistan | 2 |
Pennsylvania | 2 |
South Korea | 2 |
United Kingdom (England) | 2 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
Georgia Criterion Referenced… | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
Raven Progressive Matrices | 1 |
What Works Clearinghouse Rating
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Zhipeng Hou; Elizabeth Tipton – Research Synthesis Methods, 2024
Literature screening is the process of identifying all relevant records from a pool of candidate paper records in systematic review, meta-analysis, and other research synthesis tasks. This process is time consuming, expensive, and prone to human error. Screening prioritization methods attempt to help reviewers identify most relevant records while…
Descriptors: Meta Analysis, Research Reports, Identification, Evaluation Methods
Hung, Su-Pin; Huang, Hung-Yu – Journal of Educational and Behavioral Statistics, 2022
To address response style or bias in rating scales, forced-choice items are often used to request that respondents rank their attitudes or preferences among a limited set of options. The rating scales used by raters to render judgments on ratees' performance also contribute to rater bias or errors; consequently, forced-choice items have recently…
Descriptors: Evaluation Methods, Rating Scales, Item Analysis, Preferences
Käser, Tanja; Schwartz, Daniel L. – International Journal of Artificial Intelligence in Education, 2020
Modeling and predicting student learning in computer-based environments often relies solely on sequences of accuracy data. Previous research suggests that it does not only matter what we learn, but also how we learn. The detection and analysis of learning behavior becomes especially important, when dealing with open-ended exploration environments,…
Descriptors: Inquiry, Learning Strategies, Outcomes of Education, Academic Achievement
Beth A. Perkins – ProQuest LLC, 2021
In educational contexts, students often self-select into specific interventions (e.g., courses, majors, extracurricular programming). When students self-select into an intervention, systematic group differences may impact the validity of inferences made regarding the effect of the intervention. Propensity score methods are commonly used to reduce…
Descriptors: Probability, Causal Models, Evaluation Methods, Control Groups
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Bosch, Nigel; Paquette, Luc – Journal of Learning Analytics, 2018
Metrics including Cohen's kappa, precision, recall, and F[subscript 1] are common measures of performance for models of discrete student states, such as a student's affect or behaviour. This study examined discrete model metrics for previously published student model examples to identify situations where metrics provided differing perspectives on…
Descriptors: Models, Comparative Analysis, Prediction, Probability
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Wind, Stefanie A. – Educational Measurement: Issues and Practice, 2017
Mokken scale analysis (MSA) is a probabilistic-nonparametric approach to item response theory (IRT) that can be used to evaluate fundamental measurement properties with less strict assumptions than parametric IRT models. This instructional module provides an introduction to MSA as a probabilistic-nonparametric framework in which to explore…
Descriptors: Probability, Nonparametric Statistics, Item Response Theory, Scaling
Ding, Peng; Feller, Avi; Miratrix, Luke – Society for Research on Educational Effectiveness, 2015
Recent literature has underscored the critical role of treatment effect variation in estimating and understanding causal effects. This approach, however, is in contrast to much of the foundational research on causal inference. Linear models, for example, classically rely on constant treatment effect assumptions, or treatment effects defined by…
Descriptors: Causal Models, Randomized Controlled Trials, Statistical Analysis, Evaluation Methods
Orcan, Fatih – ProQuest LLC, 2013
Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…
Descriptors: Structural Equation Models, Evaluation Methods, Simulation, Sample Size
Walsh, Rachael; Moore, Robert F.; Doyle, Jamie Mihoko – Research Evaluation, 2018
To assist new scientists in the transition to independent research careers, the National Institutes of Health (NIH) implemented an Early Stage Investigator (ESI) policy beginning with applications submitted in 2009. During the review process, the ESI designation segregates applications submitted by investigators who are within 10 years of…
Descriptors: Researchers, Public Policy, Financial Support, Scientists
Improving Workplace-Based Assessment and Feedback by an E-Portfolio Enhanced with Learning Analytics
van der Schaaf, Marieke; Donkers, Jeroen; Slof, Bert; Moonen-van Loon, Joyce; van Tartwijk, Jan; Driessen, Eric; Badii, Atta; Serban, Ovidiu; Ten Cate, Olle – Educational Technology Research and Development, 2017
Electronic portfolios (E-portfolios) are crucial means for workplace-based assessment and feedback. Although E-portfolios provide a useful approach to view each learner's progress, so far options for personalized feedback and potential data about a learner's performances at the workplace often remain unexploited. This paper advocates that…
Descriptors: Personnel Evaluation, Evaluation Methods, Feedback (Response), Electronic Publishing
Chan, Wendy – Journal of Research on Educational Effectiveness, 2017
Recent methods to improve generalizations from nonrandom samples typically invoke assumptions such as the strong ignorability of sample selection, which is challenging to meet in practice. Although researchers acknowledge the difficulty in meeting this assumption, point estimates are still provided and used without considering alternative…
Descriptors: Generalization, Inferences, Probability, Educational Research