NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Rashkovits, Rami; Lavy, Ilana – Journal of Information Technology Education, 2011
This study discusses and presents various strategies employed by novice programmers concerning exception handling. The main contributions of this paper are as follows: we provide an analysis tool to measure the level of assimilation of exception handling mechanism; we present and analyse strategies to handle exceptions; we present and analyse…
Descriptors: Foreign Countries, Programming Languages, Computer Software, Computer Software Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Wen-Chih; Yang, Hsuan-Che; Shih, Timothy K.; Chao, Louis R. – International Journal of Distance Education Technologies, 2009
E-learning provides a convenient and efficient way for learning. Formative assessment not only guides student in instruction and learning, diagnose skill or knowledge gaps, but also measures progress and evaluation. An efficient and convenient e-learning formative assessment system is the key character for e-learning. However, most e-learning…
Descriptors: Electronic Learning, Student Evaluation, Formative Evaluation, Educational Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Eckerdal, Anna; McCartney, Robert; Mostrom, Jan Erik; Ratcliffe, Mark; Zander, Carol – Computer Science Education, 2006
This paper examines the problem of studying and comparing student software designs. We propose semantic categorization as a way to organize widely varying data items. We describe how this was used to organize a particular multi-national, multi-institutional dataset, and present the results of this analysis: most students are unable to effectively…
Descriptors: Semantics, Computer Software, Classification, Computer System Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Chao-Lin – Educational Technology & Society, 2005
The author analyzes properties of mutual information between dichotomous concepts and test items. The properties generalize some common intuitions about item comparison, and provide principled foundations for designing item-selection heuristics for student assessment in computer-assisted educational systems. The proposed item-selection strategies…
Descriptors: Test Items, Heuristics, Classification, Item Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers