Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 20 |
Descriptor
Error of Measurement | 24 |
Evaluation Methods | 24 |
Regression (Statistics) | 24 |
Simulation | 9 |
Models | 6 |
Comparative Analysis | 5 |
Scores | 5 |
Test Items | 5 |
Bayesian Statistics | 4 |
Research Design | 4 |
Statistical Bias | 4 |
More ▼ |
Source
Author
Publication Type
Education Level
Elementary Education | 2 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
District of Columbia | 1 |
Florida (Miami) | 1 |
Pakistan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
National Education… | 1 |
Praxis Series | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
What Works Clearinghouse, 2020
This supplement concerns Appendix E of the "What Works Clearinghouse (WWC) Procedures Handbook, Version 4.1." The supplement extends the range of designs and analyses that can generate effect size and standard error estimates for the WWC. This supplement presents several new standard error formulas for cluster-level assignment studies,…
Descriptors: Educational Research, Evaluation Methods, Effect Size, Research Design
Wang, Chun; Xu, Gongjun; Zhang, Xue – Grantee Submission, 2019
When latent variables are used as outcomes in regression analysis, a common approach that is used to solve the ignored measurement error issue is to take a multilevel perspective on item response modeling (IRT). Although recent computational advancement allow efficient and accurate estimation of multilevel IRT models, we argue that a two-stage…
Descriptors: Error of Measurement, Item Response Theory, Regression (Statistics), Evaluation Methods
Yesiltas, Gonca; Paek, Insu – Educational and Psychological Measurement, 2020
A log-linear model (LLM) is a well-known statistical method to examine the relationship among categorical variables. This study investigated the performance of LLM in detecting differential item functioning (DIF) for polytomously scored items via simulations where various sample sizes, ability mean differences (impact), and DIF types were…
Descriptors: Simulation, Sample Size, Item Analysis, Scores
Li, Ming; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Descriptors: Simulation, Comparative Analysis, Monte Carlo Methods, Guidelines
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R. – Journal of Research on Educational Effectiveness, 2017
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
Descriptors: Regression (Statistics), Intervention, Quasiexperimental Design, Simulation
Stamey, James D.; Beavers, Daniel P.; Sherr, Michael E. – Sociological Methods & Research, 2017
Survey data are often subject to various types of errors such as misclassification. In this article, we consider a model where interest is simultaneously in two correlated response variables and one is potentially subject to misclassification. A motivating example of a recent study of the impact of a sexual education course for adolescents is…
Descriptors: Bayesian Statistics, Classification, Models, Correlation
Keller, Bryan S. B.; Kim, Jee-Seon; Steiner, Peter M. – Society for Research on Educational Effectiveness, 2013
Propensity score analysis (PSA) is a methodological technique which may correct for selection bias in a quasi-experiment by modeling the selection process using observed covariates. Because logistic regression is well understood by researchers in a variety of fields and easy to implement in a number of popular software packages, it has…
Descriptors: Probability, Scores, Statistical Analysis, Statistical Bias
Diakow, Ronli Phyllis – ProQuest LLC, 2013
This dissertation comprises three papers that propose, discuss, and illustrate models to make improved inferences about research questions regarding student achievement in education. Addressing the types of questions common in educational research today requires three different "extensions" to traditional educational assessment: (1)…
Descriptors: Inferences, Educational Assessment, Academic Achievement, Educational Research
Zajonc, Tristan – ProQuest LLC, 2012
Effective policymaking requires understanding the causal effects of competing proposals. Relevant causal quantities include proposals' expected effect on different groups of recipients, the impact of policies over time, the potential trade-offs between competing objectives, and, ultimately, the optimal policy. This dissertation studies causal…
Descriptors: Public Policy, Policy Formation, Bayesian Statistics, Economic Development
Isenberg, Eric; Hock, Heinrich – Mathematica Policy Research, Inc., 2011
This report presents the value-added models that will be used to measure school and teacher effectiveness in the District of Columbia Public Schools (DCPS) in the 2010-2011 school year. It updates the earlier technical report, "Measuring Value Added for IMPACT and TEAM in DC Public Schools." The earlier report described the methods used…
Descriptors: Public Schools, Teacher Effectiveness, School Effectiveness, Models
Huitema, Bradley E.; McKean, Joseph W. – Educational and Psychological Measurement, 2007
Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…
Descriptors: Regression (Statistics), Evaluation Methods, Error of Measurement, Comparative Analysis
Lu, Irene R. R.; Thomas, D. Roland – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Descriptors: Least Squares Statistics, Computation, Item Response Theory, Structural Equation Models
Previous Page | Next Page »
Pages: 1 | 2