Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 13 |
Descriptor
Evaluation Methods | 14 |
Intervals | 14 |
Simulation | 14 |
Computation | 9 |
Models | 6 |
Correlation | 4 |
Monte Carlo Methods | 4 |
Statistical Analysis | 4 |
Error Patterns | 3 |
Error of Measurement | 3 |
Structural Equation Models | 3 |
More ▼ |
Source
Author
Abraham, W. Todd | 1 |
Baker, Rose | 1 |
Beavers, Daniel P. | 1 |
Beretvas, S. Natasha | 1 |
Bowden, Jack | 1 |
Dimitrov, Dimiter M. | 1 |
Divers, Jasmin | 1 |
Feng, Xingdong | 1 |
Jackson, Dan | 1 |
Kromrey, Jeffrey D. | 1 |
Li, Xin | 1 |
More ▼ |
Publication Type
Journal Articles | 12 |
Reports - Research | 7 |
Reports - Descriptive | 4 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 1 |
Education Level
High Schools | 1 |
Audience
Location
Florida (Miami) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Dimitrov, Dimiter M. – Measurement and Evaluation in Counseling and Development, 2017
This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.
Descriptors: Test Bias, Item Response Theory, Factor Analysis, Evaluation Methods
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Stamey, James D.; Beavers, Daniel P.; Sherr, Michael E. – Sociological Methods & Research, 2017
Survey data are often subject to various types of errors such as misclassification. In this article, we consider a model where interest is simultaneously in two correlated response variables and one is potentially subject to misclassification. A motivating example of a recent study of the impact of a sexual education course for adolescents is…
Descriptors: Bayesian Statistics, Classification, Models, Correlation
Li, Xin; Beretvas, S. Natasha – Structural Equation Modeling: A Multidisciplinary Journal, 2013
This simulation study investigated use of the multilevel structural equation model (MLSEM) for handling measurement error in both mediator and outcome variables ("M" and "Y") in an upper level multilevel mediation model. Mediation and outcome variable indicators were generated with measurement error. Parameter and standard…
Descriptors: Sample Size, Structural Equation Models, Simulation, Multivariate Analysis
Williams, Ryan T. – ProQuest LLC, 2012
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
Descriptors: Multiple Regression Analysis, Meta Analysis, Evaluation Methods, Computation
Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew – Applied Psychological Measurement, 2012
Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…
Descriptors: Intervals, Monte Carlo Methods, Computation, Sampling
Romano, Jeanine L.; Kromrey, Jeffrey D.; Owens, Corina M.; Scott, Heather M. – Journal of Experimental Education, 2011
In this study, the authors aimed to examine 8 of the different methods for computing confidence intervals around alpha that have been proposed to determine which of these, if any, is the most accurate and precise. Monte Carlo methods were used to simulate samples under known and controlled population conditions wherein the underlying item…
Descriptors: Intervals, Monte Carlo Methods, Rating Scales, Computation
Sass, Daniel A. – Educational and Psychological Measurement, 2010
Exploratory factor analysis (EFA) is commonly employed to evaluate the factor structure of measures with dichotomously scored items. Generally, only the estimated factor loadings are provided with no reference to significance tests, confidence intervals, and/or estimated factor loading standard errors. This simulation study assessed factor loading…
Descriptors: Intervals, Simulation, Factor Structure, Hypothesis Testing
Feng, Xingdong – ProQuest LLC, 2009
Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…
Descriptors: Intervals, Computation, Genetics, Data Analysis
Ogasawara, Haruhiko – Psychometrika, 2007
Higher-order approximations to the distributions of fit indexes for structural equation models under fixed alternative hypotheses are obtained in nonnormal samples as well as normal ones. The fit indexes include the normal-theory likelihood ratio chi-square statistic for a posited model, the corresponding statistic for the baseline model of…
Descriptors: Intervals, Structural Equation Models, Goodness of Fit, Simulation
Williams, Jason; MacKinnon, David P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…
Descriptors: Intervals, Testing, Predictor Variables, Effect Size
Mallinckrodt, Brent; Abraham, W. Todd; Wei, Meifen; Russell, Daniel W. – Journal of Counseling Psychology, 2006
P. A. Frazier, A. P. Tix, and K. E. Barron (2004) highlighted a normal theory method popularized by R. M. Baron and D. A. Kenny (1986) for testing the statistical significance of indirect effects (i.e., mediator variables) in multiple regression contexts. However, simulation studies suggest that this method lacks statistical power relative to some…
Descriptors: Statistical Significance, Multiple Regression Analysis, Simulation, Evaluation Methods
Wood, Michael – Journal of Statistics Education, 2005
This article explores the uses of a simulation model (the two bucket story)--implemented by a stand-alone computer program, or an Excel workbook (both on the web)--that can be used for deriving bootstrap confidence intervals, and simulating various probability distributions. The strengths of the model are its generality, the fact that it provides…
Descriptors: Intervals, Computer Software, Robustness (Statistics), Probability