Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 23 |
Descriptor
Evaluation Methods | 34 |
Monte Carlo Methods | 34 |
Statistical Analysis | 34 |
Computation | 11 |
Comparative Analysis | 10 |
Correlation | 9 |
Sample Size | 8 |
Effect Size | 7 |
Models | 7 |
Error of Measurement | 6 |
Factor Analysis | 6 |
More ▼ |
Source
Author
Porter, Kristin E. | 3 |
Zhang, Zhiyong | 3 |
Solanas, Antonio | 2 |
Arvey, Richard D. | 1 |
Bandalos, Deborah | 1 |
Bentler, Peter M. | 1 |
Bulte, Isis | 1 |
Cho, Sun-Joo | 1 |
Clark, M. H. | 1 |
Dimitrov, Dimiter M. | 1 |
Dudgeon, Paul | 1 |
More ▼ |
Publication Type
Journal Articles | 24 |
Reports - Research | 17 |
Reports - Evaluative | 6 |
Dissertations/Theses -… | 3 |
Guides - Non-Classroom | 3 |
Reports - Descriptive | 3 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 1 |
Audience
Researchers | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lingbo Tong; Wen Qu; Zhiyong Zhang – Grantee Submission, 2025
Factor analysis is widely utilized to identify latent factors underlying the observed variables. This paper presents a comprehensive comparative study of two widely used methods for determining the optimal number of factors in factor analysis, the K1 rule, and parallel analysis, along with a more recently developed method, the bass-ackward method.…
Descriptors: Factor Analysis, Monte Carlo Methods, Statistical Analysis, Sample Size
Testing Autocorrelation and Partial Autocorrelation: Asymptotic Methods versus Resampling Techniques
Ke, Zijun; Zhang, Zhiyong – Grantee Submission, 2018
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such…
Descriptors: Correlation, Mathematical Formulas, Sampling, Monte Carlo Methods
Whittaker, Tiffany A.; Khojasteh, Jam – Journal of Experimental Education, 2017
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact…
Descriptors: Statistical Analysis, Monte Carlo Methods, Models, Structural Equation Models
Porter, Kristin E. – Journal of Research on Educational Effectiveness, 2018
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Dimitrov, Dimiter M. – Measurement and Evaluation in Counseling and Development, 2017
This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.
Descriptors: Test Bias, Item Response Theory, Factor Analysis, Evaluation Methods
Porter, Kristin E. – Grantee Submission, 2017
Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs) are statistical…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Porter, Kristin E. – MDRC, 2016
In education research and in many other fields, researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple…
Descriptors: Statistical Analysis, Program Effectiveness, Intervention, Hypothesis Testing
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Landmesser, John Andrew – ProQuest LLC, 2014
Information technology (IT) investment decision makers are required to process large volumes of complex data. An existing body of knowledge relevant to IT portfolio management (PfM), decision analysis, visual comprehension of large volumes of information, and IT investment decision making suggest Multi-Criteria Decision Making (MCDM) and…
Descriptors: Information Technology, Portfolio Assessment, Decision Making, Cognitive Processes
Itang'ata, Mukaria J. J. – ProQuest LLC, 2013
Often researchers face situations where comparative studies between two or more programs are necessary to make causal inferences for informed policy decision-making. Experimental designs employing randomization provide the strongest evidence for causal inferences. However, many pragmatic and ethical challenges may preclude the use of randomized…
Descriptors: Comparative Analysis, Probability, Statistical Bias, Monte Carlo Methods
McGrath, Robert E.; Walters, Glenn D. – Psychological Methods, 2012
Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Computation
Minelli, Rachel M. – ProQuest LLC, 2012
This dissertation reports the results of three studies and a pilot study. The first study was a Monte Carlo validation study that examined the accuracy of a new visual inspection method, the semi-interquartile range method. Results of the study indicated that this method had lower levels of power than a previously validated method, the…
Descriptors: Educational Assessment, Student Evaluation, Evaluation Methods, Preservice Teachers
Murayama, Kou; Sakaki, Michiko; Yan, Veronica X.; Smith, Garry M. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are…
Descriptors: Metacognition, Memory, Accuracy, Statistical Analysis