NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)11
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Widaman, Keith F. – Measurement: Interdisciplinary Research and Perspectives, 2014
Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…
Descriptors: Structural Equation Models, Predictor Variables, Educational Research, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W. -L. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Meta-analysis is the statistical analysis of a collection of analysis results from individual studies, conducted for the purpose of integrating the findings. Structural equation modeling (SEM), on the other hand, is a multivariate technique for testing hypothetical models with latent and observed variables. This article shows that fixed-effects…
Descriptors: Structural Equation Models, Syntax, Effect Size, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z.; Puma, Mike; Deke, John – National Center for Education Evaluation and Regional Assistance, 2014
This report summarizes the complex research literature on quantitative methods for assessing how impacts of educational interventions on instructional practices and student learning differ across students, educators, and schools. It also provides technical guidance about the use and interpretation of these methods. The research topics addressed…
Descriptors: Statistical Analysis, Evaluation Methods, Educational Research, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Xia, Ye-Mao – Psychometrika, 2008
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Descriptors: Structural Equation Models, Bayesian Statistics, Evaluation Methods, Evaluation Research
Peer reviewed Peer reviewed
Direct linkDirect link
Wong, Emily M. L.; Li, Sandy C. – Australasian Journal of Educational Technology, 2011
Despite the common belief that information and communication technology (ICT) has the potential to support certain fundamental changes in learning, few have examined ICT implementation conceptually within a wider context of educational change. Methodologically, we are by and large limited to building simple models that accommodate only a single…
Descriptors: Foreign Countries, Technology Integration, Collegiality, Educational Change
Peer reviewed Peer reviewed
Direct linkDirect link
French, Brian F.; Finch, W. Holmes – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Descriptors: Test Items, Simulation, Factor Structure, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Jason; MacKinnon, David P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…
Descriptors: Intervals, Testing, Predictor Variables, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
McDonald, Roderick P. – Structural Equation Modeling, 2004
Improper structures arising from the estimation of parameters in structural equation models (SEMs) are commonly an indication that the model is incorrectly specified. The use of boundary solutions cannot in general be recommended. Partly on the basis of theory given by Van Driel, and partly by example, suggestions are made for using the data as…
Descriptors: Structural Equation Models, Evaluation Methods, Error of Measurement, Evaluation Research
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling, 2004
In applications of structural equation modeling, it is often desirable to obtain measures of uncertainty for special functions of model parameters. This article provides a didactic discussion of how a method widely used in applied statistics can be employed for approximate standard error and confidence interval evaluation of such functions. The…
Descriptors: Intervals, Structural Equation Models, Evaluation Methods, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hox, Joop; Lensvelt-Mulders, Gerty – Structural Equation Modeling, 2004
This article describes a technique to analyze randomized response data using available structural equation modeling (SEM) software. The randomized response technique was developed to obtain estimates that are more valid when studying sensitive topics. The basic feature of all randomized response methods is that the data are deliberately…
Descriptors: Structural Equation Models, Item Response Theory, Evaluation Research, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L.; Millsap, Roger E. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The usefulness of assessing individual fit in latent growth curve models was examined. The study used simulated data based on an unconditional and a conditional latent growth curve model with a linear component and a small quadratic component and a linear model was fit to the data. Then the overall fit of linear and quadratic models to these data…
Descriptors: Structural Equation Models, Evaluation Methods, Goodness of Fit, Individual Development
Peer reviewed Peer reviewed
Direct linkDirect link
Dudgeon, Paul – Structural Equation Modeling, 2004
This article considers the implications for other noncentrality parameter-based statistics from Steiger's (1998) multiple sample adjustment to the root mean square error of approximation (RMSEA) measure. When a structural equation model is fitted simultaneously in more than 1 sample, it is shown that the calculation of the noncentrality parameter…
Descriptors: Statistical Analysis, Monte Carlo Methods, Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Bentler, Peter M.; Chan, Wai – Psychometrika, 2004
Data in social and behavioral sciences typically possess heavy tails. Structural equation modeling is commonly used in analyzing interrelations among variables of such data. Classical methods for structural equation modeling fit a proposed model to the sample covariance matrix, which can lead to very inefficient parameter estimates. By fitting a…
Descriptors: Structural Equation Models, Statistical Distributions, Evaluation Methods, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin – Structural Equation Modeling, 2004
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
Descriptors: Statistical Significance, Structural Equation Models, Evaluation Methods, Evaluation Research
Previous Page | Next Page ยป
Pages: 1  |  2