NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Austerweil, Joseph L.; Griffiths, Thomas L.; Palmer, Stephen E. – Cognitive Science, 2017
How does the visual system recognize images of a novel object after a single observation despite possible variations in the viewpoint of that object relative to the observer? One possibility is comparing the image with a prototype for invariance over a relevant transformation set (e.g., translations and dilations). However, invariance over…
Descriptors: Prior Learning, Inferences, Visual Acuity, Recognition (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Frank, Michael C.; Goldwater, Sharon; Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2010
The ability to discover groupings in continuous stimuli on the basis of distributional information is present across species and across perceptual modalities. We investigate the nature of the computations underlying this ability using statistical word segmentation experiments in which we vary the length of sentences, the amount of exposure, and…
Descriptors: Sentences, Performance Technology, Experiments, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Austerweil, Joseph L.; Griffiths, Thomas L. – Cognitive Psychology, 2011
Most psychological theories treat the features of objects as being fixed and immediately available to observers. However, novel objects have an infinite array of properties that could potentially be encoded as features, raising the question of how people learn which features to use in representing those objects. We focus on the effects of…
Descriptors: Visual Stimuli, Novelty (Stimulus Dimension), Bayesian Statistics, Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Buchsbaum, Daphna; Gopnik, Alison; Griffiths, Thomas L.; Shafto, Patrick – Cognition, 2011
Children are ubiquitous imitators, but how do they decide which actions to imitate? One possibility is that children rationally combine multiple sources of information about which actions are necessary to cause a particular outcome. For instance, children might learn from contingencies between action sequences and outcomes across repeated…
Descriptors: Evidence, Models, Imitation, Preschool Children
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Psychological Review, 2009
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…
Descriptors: Causal Models, Prior Learning, Logical Thinking, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Christian, Brian R.; Kalish, Michael L. – Cognitive Science, 2008
Many of the problems studied in cognitive science are inductive problems, requiring people to evaluate hypotheses in the light of data. The key to solving these problems successfully is having the right inductive biases--assumptions about the world that make it possible to choose between hypotheses that are equally consistent with the observed…
Descriptors: Logical Thinking, Bias, Identification, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L. – Cognitive Science, 2008
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Descriptors: Mathematics Education, Concept Formation, Models, Prediction