NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M. – Measurement: Interdisciplinary Research and Perspectives, 2016
The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…
Descriptors: Causal Models, Factor Analysis, Prediction, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Jennrich, Robert I.; Bentler, Peter M. – Psychometrika, 2011
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…
Descriptors: Factor Analysis, Criteria, Data, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Jennrich, Robert I.; Bentler, Peter M. – Psychometrika, 2012
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford ("Psychometrika" 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler ("Psychometrika" 76:537-549, 2011) introduced an exploratory form of bi-factor…
Descriptors: Factor Structure, Factor Analysis, Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; de Leeuw, Jan – Psychometrika, 2011
When the factor analysis model holds, component loadings are linear combinations of factor loadings, and vice versa. This interrelation permits us to define new optimization criteria and estimation methods for exploratory factor analysis. Although this article is primarily conceptual in nature, an illustrative example and a small simulation show…
Descriptors: Factor Analysis, Models, Computation, Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Yuan, Ke-Hai – Psychometrika, 2011
Indefinite symmetric matrices that are estimates of positive-definite population matrices occur in a variety of contexts such as correlation matrices computed from pairwise present missing data and multinormal based methods for discretized variables. This note describes a methodology for scaling selected off-diagonal rows and columns of such a…
Descriptors: Scaling, Factor Analysis, Correlation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Hayashi, Kentaro; Bentler, Peter M.; Yuan, Ke-Hai – Structural Equation Modeling: A Multidisciplinary Journal, 2007
In the exploratory factor analysis, when the number of factors exceeds the true number of factors, the likelihood ratio test statistic no longer follows the chi-square distribution due to a problem of rank deficiency and nonidentifiability of model parameters. As a result, decisions regarding the number of factors may be incorrect. Several…
Descriptors: Researchers, Factor Analysis, Factor Structure, Structural Equation Models
Peer reviewed Peer reviewed
Hayashi, Kentaro; Bentler, Peter M. – Psychometrika, 2000
Investigated the conditions under which the matrix of factor loadings from the factor analysis model with equal unique variances will give a good approximation to the matrix of factor loadings from the regular factor analysis model. Extends the results to the image factor analysis model. Discusses implications for practice. (SLD)
Descriptors: Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Yung, Yiu-Fai; Bentler, Peter M. – Journal of Educational and Behavioral Statistics, 1999
Using explicit formulas for the information matrix of maximum likelihood factor analysis under multivariate normal theory, gross and net information for estimating the parameters in a covariance structure gained by adding the associated mean structure are defined. (Author/SLD)
Descriptors: Estimation (Mathematics), Factor Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Yuan, Ke-Hai; Bentler, Peter M. – Psychometrika, 2002
Examined the asymptotic distributions of three reliability coefficient estimates: (1) sample coefficient alpha; (2) reliability estimate of a composite score following factor analysis; and (3) maximal reliability of a linear combination of item scores after factor analysis. Findings show that normal theory based asymptotic distributions for these…
Descriptors: Estimation (Mathematics), Factor Analysis, Reliability, Robustness (Statistics)
Peer reviewed Peer reviewed
Bentler, Peter M. – Multivariate Behavioral Research, 1976
A general statistical model for the multivariate analysis of mean and covariance structures is described. Matrix calculus is used to develop the statistical aspects of one new special case in detail. This special case separates the confounding of principal components and factor analysis. (DEP)
Descriptors: Analysis of Covariance, Calculus, Comparative Analysis, Factor Analysis
Peer reviewed Peer reviewed
Bentler, Peter M. – Structural Equation Modeling, 2000
Discusses issues related to model evaluation in structural equation modeling. Supports nested model comparisons via sequential chi-square difference tests as consistent with the four-step approach to model evaluation when models of the factor analytic simultaneous equation type are entertained. (Author/SLD)
Descriptors: Chi Square, Evaluation Methods, Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Xie, Jun; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2003
Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…
Descriptors: Path Analysis, Genetics, Structural Equation Models, Factor Analysis
Peer reviewed Peer reviewed
Bentler, Peter M.; Weeks, David G. – Multivariate Behavioral Research, 1979
Factor analysis in several populations, covariance structure models, three-mode factor analysis, structural equations systems with measurement model, and analysis of covariance with measurement model are all shown to be specializations of a general moment structure model. Some new structured linear models are also described. (Author/CTM)
Descriptors: Analysis of Covariance, Computer Programs, Critical Path Method, Factor Analysis
Previous Page | Next Page »
Pages: 1  |  2