Publication Date
In 2025 | 2 |
Since 2024 | 18 |
Since 2021 (last 5 years) | 44 |
Since 2016 (last 10 years) | 78 |
Since 2006 (last 20 years) | 211 |
Descriptor
Factor Analysis | 614 |
Factor Structure | 219 |
Correlation | 130 |
Test Validity | 123 |
Measures (Individuals) | 78 |
Scores | 77 |
Psychometrics | 75 |
Statistical Analysis | 72 |
Goodness of Fit | 68 |
Comparative Analysis | 65 |
Test Reliability | 63 |
More ▼ |
Source
Educational and Psychological… | 614 |
Author
Publication Type
Education Level
Audience
Practitioners | 1 |
Students | 1 |
Teachers | 1 |
Location
Canada | 10 |
United States | 9 |
Australia | 7 |
Germany | 5 |
Israel | 5 |
United Kingdom | 5 |
Japan | 3 |
South Korea | 3 |
Spain | 3 |
Belgium | 2 |
China | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Nataly Beribisky; Gregory R. Hancock – Educational and Psychological Measurement, 2024
Fit indices are descriptive measures that can help evaluate how well a confirmatory factor analysis (CFA) model fits a researcher's data. In multigroup models, before between-group comparisons are made, fit indices may be used to evaluate measurement invariance by assessing the degree to which multiple groups' data are consistent with increasingly…
Descriptors: Factor Analysis, Research Methodology, Comparative Testing, Measurement
Pere J. Ferrando; David Navarro-González; Urbano Lorenzo-Seva – Educational and Psychological Measurement, 2024
Descriptive fit indices that do not require a formal statistical basis and do not specifically depend on a given estimation criterion are useful as auxiliary devices for judging the appropriateness of unrestricted or exploratory factor analytical (UFA) solutions, when the problem is to decide the most appropriate number of common factors. While…
Descriptors: Factor Analysis, Item Analysis, Effect Size, Goodness of Fit
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Dexin Shi; Bo Zhang; Ren Liu; Zhehan Jiang – Educational and Psychological Measurement, 2024
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and…
Descriptors: Goodness of Fit, Factor Analysis, Simulation, Accuracy
Monica Casella; Pasquale Dolce; Michela Ponticorvo; Nicola Milano; Davide Marocco – Educational and Psychological Measurement, 2024
Short-form development is an important topic in psychometric research, which requires researchers to face methodological choices at different steps. The statistical techniques traditionally used for shortening tests, which belong to the so-called exploratory model, make assumptions not always verified in psychological data. This article proposes a…
Descriptors: Artificial Intelligence, Test Construction, Test Format, Psychometrics
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Schweizer, Karl; Gold, Andreas; Krampen, Dorothea – Educational and Psychological Measurement, 2023
In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlations as input and at exploring the consequences of…
Descriptors: Data, Models, Factor Analysis, Correlation
Karl Schweizer; Andreas Gold; Dorothea Krampen; Stefan Troche – Educational and Psychological Measurement, 2024
Conceptualizing two-variable disturbances preventing good model fit in confirmatory factor analysis as item-level method effects instead of correlated residuals avoids violating the principle that residual variation is unique for each item. The possibility of representing such a disturbance by a method factor of a bifactor measurement model was…
Descriptors: Correlation, Factor Analysis, Measurement Techniques, Item Analysis
Liu, Xiaoling; Cao, Pei; Lai, Xinzhen; Wen, Jianbing; Yang, Yanyun – Educational and Psychological Measurement, 2023
Percentage of uncontaminated correlations (PUC), explained common variance (ECV), and omega hierarchical ([omega]H) have been used to assess the degree to which a scale is essentially unidimensional and to predict structural coefficient bias when a unidimensional measurement model is fit to multidimensional data. The usefulness of these indices…
Descriptors: Correlation, Measurement Techniques, Prediction, Regression (Statistics)
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
André Beauducel; Norbert Hilger; Tobias Kuhl – Educational and Psychological Measurement, 2024
Regression factor score predictors have the maximum factor score determinacy, that is, the maximum correlation with the corresponding factor, but they do not have the same inter-correlations as the factors. As it might be useful to compute factor score predictors that have the same inter-correlations as the factors, correlation-preserving factor…
Descriptors: Scores, Factor Analysis, Correlation, Predictor Variables
Raykov, Tenko; Anthony, James C.; Menold, Natalja – Educational and Psychological Measurement, 2023
The population relationship between coefficient alpha and scale reliability is studied in the widely used setting of unidimensional multicomponent measuring instruments. It is demonstrated that for any set of component loadings on the common factor, regardless of the extent of their inequality, the discrepancy between alpha and reliability can be…
Descriptors: Correlation, Evaluation Research, Reliability, Measurement Techniques
David Goretzko; Karik Siemund; Philipp Sterner – Educational and Psychological Measurement, 2024
Confirmatory factor analyses (CFA) are often used in psychological research when developing measurement models for psychological constructs. Evaluating CFA model fit can be quite challenging, as tests for exact model fit may focus on negligible deviances, while fit indices cannot be interpreted absolutely without specifying thresholds or cutoffs.…
Descriptors: Factor Analysis, Goodness of Fit, Psychological Studies, Measurement
Franz Classe; Christoph Kern – Educational and Psychological Measurement, 2024
We develop a "latent variable forest" (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on "confirmatory factor analysis" (CFA) models with ordinal and/or numerical response variables. Through parametric model…
Descriptors: Algorithms, Item Response Theory, Artificial Intelligence, Factor Analysis
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2021
Methods for optimal factor rotation of two-facet loading matrices have recently been proposed. However, the problem of the correct number of factors to retain for rotation of two-facet loading matrices has rarely been addressed in the context of exploratory factor analysis. Most previous studies were based on the observation that two-facet loading…
Descriptors: Factor Analysis, Statistical Analysis, Correlation, Models