Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 45 |
Descriptor
Factor Analysis | 208 |
Factor Structure | 51 |
Correlation | 47 |
Comparative Analysis | 40 |
Matrices | 39 |
Mathematical Models | 33 |
Statistical Analysis | 31 |
Goodness of Fit | 30 |
Models | 30 |
Simulation | 26 |
Orthogonal Rotation | 22 |
More ▼ |
Source
Multivariate Behavioral… | 208 |
Author
Publication Type
Education Level
Higher Education | 6 |
Postsecondary Education | 3 |
Adult Education | 2 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Spain | 2 |
Australia | 1 |
Belgium | 1 |
China | 1 |
Colorado | 1 |
France | 1 |
Italy | 1 |
Netherlands | 1 |
New Zealand | 1 |
Norway | 1 |
Portugal | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gignac, Gilles E.; Watkins, Marley W. – Multivariate Behavioral Research, 2013
Previous confirmatory factor analytic research that has examined the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) has endorsed either higher order models or oblique factor models that tend to amalgamate both general factor and index factor sources of systematic variance. An alternative model that has not yet…
Descriptors: Intelligence Tests, Test Reliability, Factor Structure, Models
Choosing the Optimal Number of Factors in Exploratory Factor Analysis: A Model Selection Perspective
Preacher, Kristopher J.; Zhang, Guangjian; Kim, Cheongtag; Mels, Gerhard – Multivariate Behavioral Research, 2013
A central problem in the application of exploratory factor analysis is deciding how many factors to retain ("m"). Although this is inherently a model selection problem, a model selection perspective is rarely adopted for this task. We suggest that Cudeck and Henly's (1991) framework can be applied to guide the selection process.…
Descriptors: Factor Analysis, Models, Selection, Goodness of Fit
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Ferrari, Pier Alda; Barbiero, Alessandro – Multivariate Behavioral Research, 2012
The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from…
Descriptors: Data, Statistical Analysis, Sampling, Simulation
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Varriale, Roberta; Vermunt, Jeroen K. – Multivariate Behavioral Research, 2012
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…
Descriptors: Factor Analysis, Models, Statistical Analysis, Maximum Likelihood Statistics
Steinley, Douglas; Brusco, Michael J.; Henson, Robert – Multivariate Behavioral Research, 2012
A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…
Descriptors: Multivariate Analysis, Factor Analysis, Comparative Analysis, Federal Courts
Lin, Johnny; Bentler, Peter M. – Multivariate Behavioral Research, 2012
Goodness-of-fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square, but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's (1984) asymptotically distribution-free method and Satorra Bentler's…
Descriptors: Factor Analysis, Statistical Analysis, Scaling, Sample Size
Rouder, Jeffrey N.; Morey, Richard D. – Multivariate Behavioral Research, 2012
In this article, we present a Bayes factor solution for inference in multiple regression. Bayes factors are principled measures of the relative evidence from data for various models or positions, including models that embed null hypotheses. In this regard, they may be used to state positive evidence for a lack of an effect, which is not possible…
Descriptors: Bayesian Statistics, Multiple Regression Analysis, Factor Analysis, Statistical Inference
Estabrook, Ryne; Neale, Michael – Multivariate Behavioral Research, 2013
Factor score estimation is a controversial topic in psychometrics, and the estimation of factor scores from exploratory factor models has historically received a great deal of attention. However, both confirmatory factor models and the existence of missing data have generally been ignored in this debate. This article presents a simulation study…
Descriptors: Factor Analysis, Scores, Computation, Regression (Statistics)
Castro-Schilo, Laura; Ferrer, Emilio – Multivariate Behavioral Research, 2013
We illustrate the idiographic/nomothetic debate by comparing 3 approaches to using daily self-report data on affect for predicting relationship quality and breakup. The 3 approaches included (a) the first day in the series of daily data; (b) the mean and variability of the daily series; and (c) parameters from dynamic factor analysis, a…
Descriptors: Factor Analysis, Prediction, Group Behavior, Collectivism
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Sass, Daniel A.; Schmitt, Thomas A. – Multivariate Behavioral Research, 2010
Exploratory factor analysis (EFA) is a commonly used statistical technique for examining the relationships between variables (e.g., items) and the factors (e.g., latent traits) they depict. There are several decisions that must be made when using EFA, with one of the more important being choice of the rotation criterion. This selection can be…
Descriptors: Factor Analysis, Criteria, Factor Structure, Correlation
Reise, Steven P. – Multivariate Behavioral Research, 2012
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor modeling been rediscovered as an effective approach to modeling "construct-relevant" multidimensionality in a set of ordered categorical item responses. I begin by describing the Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957) and highlight its…
Descriptors: Models, Factor Structure, Factor Analysis, Correlation
Spain, Seth M.; Miner, Andrew G.; Kroonenberg, Pieter M.; Drasgow, Fritz – Multivariate Behavioral Research, 2010
Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of…
Descriptors: Job Performance, Factor Analysis, Sampling, Methods