Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 17 |
Descriptor
Bayesian Statistics | 18 |
Factor Analysis | 18 |
Structural Equation Models | 18 |
Computation | 6 |
Goodness of Fit | 6 |
Correlation | 5 |
Monte Carlo Methods | 5 |
Sample Size | 5 |
Comparative Analysis | 4 |
Markov Processes | 4 |
Statistical Analysis | 4 |
More ▼ |
Source
Author
Asparouhov, Tihomir | 2 |
Muthen, Bengt | 2 |
Alamri, Abeer A. | 1 |
Arav, Marina | 1 |
Beauducel, André | 1 |
Cai, Li | 1 |
Canivez, Gary L. | 1 |
Cao, Chunhua | 1 |
Cross, Jennifer Riedl | 1 |
Cross, Tracy L. | 1 |
Depaoli, Sarah | 1 |
More ▼ |
Publication Type
Journal Articles | 17 |
Reports - Research | 11 |
Opinion Papers | 3 |
Reports - Descriptive | 2 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Saudi Arabia | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Differential Aptitude Test | 1 |
What Works Clearinghouse Rating
Liang, Xinya; Cao, Chunhua – Journal of Experimental Education, 2023
To evaluate multidimensional factor structure, a popular method that combines features of confirmatory and exploratory factor analysis is Bayesian structural equation modeling with small-variance normal priors (BSEM-N). This simulation study evaluated BSEM-N as a variable selection and parameter estimation tool in factor analysis with sparse…
Descriptors: Factor Analysis, Bayesian Statistics, Structural Equation Models, Simulation
James Ohisei Uanhoro – ProQuest LLC, 2021
This dissertation is a collection of three papers. The first is a conceptual paper, followed by two data analysis papers. All three papers examine the connection between structural equation models and regression models, and how one may better learn, research and apply structural equation models when structural equation models are thought of as…
Descriptors: Structural Equation Models, Bayesian Statistics, Multiple Regression Analysis, Factor Analysis
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Yang, Yanyun; Xia, Yan – Educational and Psychological Measurement, 2019
When item scores are ordered categorical, categorical omega can be computed based on the parameter estimates from a factor analysis model using frequentist estimators such as diagonally weighted least squares. When the sample size is relatively small and thresholds are different across items, using diagonally weighted least squares can yield a…
Descriptors: Scores, Sample Size, Bayesian Statistics, Item Analysis
Sideridis, Georgios D.; Tsaousis, Ioannis; Alamri, Abeer A. – Educational and Psychological Measurement, 2020
The main thesis of the present study is to use the Bayesian structural equation modeling (BSEM) methodology of establishing approximate measurement invariance (A-MI) using data from a national examination in Saudi Arabia as an alternative to not meeting strong invariance criteria. Instead, we illustrate how to account for the absence of…
Descriptors: Bayesian Statistics, Structural Equation Models, Foreign Countries, Error of Measurement
Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L. – Psychology in the Schools, 2018
Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Aptitude Tests
Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L. – Roeper Review, 2016
To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…
Descriptors: Statistical Analysis, Academically Gifted, Factor Analysis, Multivariate Analysis
Muthen, Bengt; Asparouhov, Tihomir – Psychological Methods, 2012
This rejoinder discusses the general comments on how to use Bayesian structural equation modeling (BSEM) wisely and how to get more people better trained in using Bayesian methods. Responses to specific comments cover how to handle sign switching, nonconvergence and nonidentification, and prior choices in latent variable models. Two new…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Statistical Analysis
Rindskopf, David – Psychological Methods, 2012
Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Computation
MacCallum, Robert C.; Edwards, Michael C.; Cai, Li – Psychological Methods, 2012
Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…
Descriptors: Structural Equation Models, Bayesian Statistics, Computation, Expertise
Muthen, Bengt; Asparouhov, Tihomir – Psychological Methods, 2012
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
Descriptors: Factor Analysis, Cognitive Ability, Science Achievement, Structural Equation Models
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
Previous Page | Next Page »
Pages: 1 | 2