Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 38 |
Descriptor
Source
Author
Publication Type
Journal Articles | 41 |
Reports - Research | 20 |
Reports - Descriptive | 11 |
Reports - Evaluative | 8 |
Dissertations/Theses -… | 2 |
Opinion Papers | 2 |
Guides - General | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Secondary Education | 3 |
Elementary Education | 2 |
Higher Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Elementary Secondary Education | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 4 | 1 |
Grade 7 | 1 |
More ▼ |
Audience
Practitioners | 1 |
Students | 1 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Eysenck Personality Inventory | 1 |
Program for International… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Shi, Dexin; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual…
Descriptors: Structural Equation Models, Computation, Maximum Likelihood Statistics, Least Squares Statistics
Paek, Insu; Cui, Mengyao; Öztürk Gübes, Nese; Yang, Yanyun – Educational and Psychological Measurement, 2018
The purpose of this article is twofold. The first is to provide evaluative information on the recovery of model parameters and their standard errors for the two-parameter item response theory (IRT) model using different estimation methods by Mplus. The second is to provide easily accessible information for practitioners, instructors, and students…
Descriptors: Item Response Theory, Computation, Factor Analysis, Statistical Analysis
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M. – International Journal of Behavioral Development, 2016
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
Descriptors: Measures (Individuals), Structural Equation Models, Test Norms, Case Studies
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M. – Grantee Submission, 2016
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
Descriptors: Adolescents, Case Studies, Children, Computation
Lewis, Todd F. – Measurement and Evaluation in Counseling and Development, 2017
American Educational Research Association (AERA) standards stipulate that researchers show evidence of the internal structure of instruments. Confirmatory factor analysis (CFA) is one structural equation modeling procedure designed to assess construct validity of assessments that has broad applicability for counselors interested in instrument…
Descriptors: Educational Research, Factor Analysis, Structural Equation Models, Construct Validity
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Schulz, Andreas – Mathematical Thinking and Learning: An International Journal, 2018
Theoretical analysis of whole number-based calculation strategies and digit-based algorithms for multi-digit multiplication and division reveals that strategy use includes two kinds of reasoning: reasoning about the relations between numbers and reasoning about the relations between operations. In contrast, algorithms aim to reduce the necessary…
Descriptors: Computation, Mathematics Instruction, Multiplication, Arithmetic
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman – Psychological Methods, 2013
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Descriptors: Structural Equation Models, Multivariate Analysis, Computation, Factor Analysis