NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Location
Hawaii1
Yemen1
Laws, Policies, & Programs
Assessments and Surveys
Beck Depression Inventory1
What Works Clearinghouse Rating
Showing 1 to 15 of 25 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl; Gold, Andreas; Krampen, Dorothea – Educational and Psychological Measurement, 2023
In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlations as input and at exploring the consequences of…
Descriptors: Data, Models, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Montoya, Amanda K.; Edwards, Michael C. – Educational and Psychological Measurement, 2021
Model fit indices are being increasingly recommended and used to select the number of factors in an exploratory factor analysis. Growing evidence suggests that the recommended cutoff values for common model fit indices are not appropriate for use in an exploratory factor analysis context. A particularly prominent problem in scale evaluation is the…
Descriptors: Goodness of Fit, Factor Analysis, Cutting Scores, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Dai, Ting; Du, Yang; Cromley, Jennifer G.; Fechter, Tia M.; Nelson, Frank – AERA Online Paper Repository, 2019
Certain planned-missing designs (e.g., simple-matrix sampling) cause zero covariances between variables not jointly observed, making it impossible to do analyses beyond mean estimations without specialized analyses. We tested a multigroup confirmatory factor analysis (CFA) approach by Cudeck (2000), which obtains a model-estimated…
Descriptors: Factor Analysis, Educational Research, Research Design, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Strunk, Kamden K.; Lane, Forrest C. – Measurement and Evaluation in Counseling and Development, 2017
A common concern about the Beck Depression Inventory, Second edition (BDI-II) among researchers in the area of depression has long been the single-factor scoring scheme. Methods exist for making cross-sample comparisons of latent structure but tend to rely on estimation methods that can be imprecise and unnecessarily complex. This study presents a…
Descriptors: Depression (Psychology), Measures (Individuals), Error of Measurement, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Isaac, Osama; Abdullah, Zaini; Ramayah, T.; Mutahar, Ahmed M. – International Journal of Information and Learning Technology, 2017
Purpose: The internet technology becomes an essential tool for individuals, organizations, and nations for growth and prosperity. The purpose of this paper is to integrate the DeLone and McLean IS success model with task-technology fit (TTF) to explain the performance impact of Yemeni Government employees. Design/methodology/approach:…
Descriptors: Foreign Countries, Internet, Use Studies, Users (Information)
Peer reviewed Peer reviewed
Direct linkDirect link
Köse, Alper – Educational Research and Reviews, 2014
The primary objective of this study was to examine the effect of missing data on goodness of fit statistics in confirmatory factor analysis (CFA). For this aim, four missing data handling methods; listwise deletion, full information maximum likelihood, regression imputation and expectation maximization (EM) imputation were examined in terms of…
Descriptors: Data Analysis, Data Collection, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mizumoto, Atsushi; Chujo, Kiyomi; Yokota, Kenji – ReCALL, 2016
In spite of researchers' and practitioners' increasing attention to data-driven learning (DDL) and increasing numbers of DDL studies, a multi-item scale to measure learners' attitude toward DDL has not been developed thus far. In the present study, we developed and validated a psychometric scale to measure learners' perceived preferences and…
Descriptors: Student Attitudes, Preferences, Questionnaires, English (Second Language)
Peer reviewed Peer reviewed
Direct linkDirect link
McArdle, John J.; Hamagami, Fumiaki; Bautista, Randy; Onoye, Jane; Hishinuma, Earl S.; Prescott, Carol A.; Takeshita, Junji; Zonderman, Alan B.; Johnson, Ronald C. – Educational and Psychological Measurement, 2014
In this study, we reanalyzed the classic Hawai'i Family Study of Cognition (HFSC) data using contemporary multilevel modeling techniques. We used the HFSC baseline data ("N" = 6,579) and reexamined the factorial structure of 16 cognitive variables using confirmatory (restricted) measurement models in an explicit sequence. These models…
Descriptors: Factor Analysis, Hierarchical Linear Modeling, Data Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L. – Multivariate Behavioral Research, 2011
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Descriptors: Simulation, Research Methodology, Factor Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soon-Mook – International Journal of Testing, 2010
CEFA 3.02(Browne, Cudeck, Tateneni, & Mels, 2008) is a factor analysis computer program designed to perform exploratory factor analysis. It provides the main properties that are needed for exploratory factor analysis, namely a variety of factoring methods employing eight different discrepancy functions to be minimized to yield initial…
Descriptors: Factor Structure, Computer Software, Factor Analysis, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Erford, Bradley T.; Schein, Hallie; Duncan, Kelly – Assessment for Effective Intervention, 2011
The purpose of this study was to provide preliminary analysis of reliability and validity of scores on the "Self-Efficacy Self-Report Scale", which was designed to assess general self-efficacy in students aged 10 to 17 years. Confirmatory factor analysis on cross-validated samples was conducted revealing a marginal fit of the data to the…
Descriptors: Self Efficacy, Measures (Individuals), Factor Analysis, Self Disclosure (Individuals)
Peer reviewed Peer reviewed
Muthen, Bengt; Christoffersson, Anders – Psychometrika, 1981
A new method is proposed for a simultaneous factor analysis of dichotomous responses from several groups of individuals. The method makes it possible to compare factor loading pattern, factor variances and covariances, and factor means over groups. Generalized least squares is used as the estimation procedure. (Author/JKS)
Descriptors: Data Analysis, Factor Analysis, Goodness of Fit, Hypothesis Testing
Peer reviewed Peer reviewed
Hakstian, A. Ralph; And Others – Multivariate Behavioral Research, 1982
Issues related to the decision of the number of factors to retain in factor analyses are identified. Three widely used decision rules--the Kaiser-Guttman (eigenvalue greater than one), scree, and likelihood ratio tests--are investigated using simulated data. Recommendations for use are made. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Factor Analysis, Factor Structure
Peer reviewed Peer reviewed
Zwick, William R. – Multivariate Behavioral Research, 1982
The performance of four rules for determining the number of components (factors) to retain (Kaiser's eigenvalue greater than one, Cattell's scree, Bartlett's test, and Velicer's Map) was investigated across four systematically varied factors (sample size, number of variables, number of components, and component saturation). (Author/JKS)
Descriptors: Algorithms, Data Analysis, Factor Analysis, Factor Structure
Previous Page | Next Page »
Pages: 1  |  2