Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 3 |
Descriptor
Author
April E. Cho | 1 |
Chun Wang | 1 |
Ferrer, Emilio | 1 |
Gongjun Xu | 1 |
Jiaying Xiao | 1 |
Lee, Sik-Yum | 1 |
Lu, Bin | 1 |
Song, Hairong | 1 |
Song, Xin-Yuan | 1 |
Publication Type
Journal Articles | 2 |
Reports - Evaluative | 2 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Education… | 1 |
What Works Clearinghouse Rating
April E. Cho; Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2022
Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT), is a general framework for specifying the functional relationship between a respondent's multiple latent traits and their response to assessment items. The key element in MIRT is the relationship between the items and the latent traits, so-called item factor…
Descriptors: Factor Analysis, Item Response Theory, Mathematics, Computation
Song, Hairong; Ferrer, Emilio – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Descriptors: Factor Analysis, Computation, Mathematics, Maximum Likelihood Statistics
Lee, Sik-Yum; Song, Xin-Yuan; Lu, Bin – Multivariate Behavioral Research, 2007
This article proposes an intuitive approach for predictive discriminant analysis with mixed continuous, dichotomous, and ordered categorical variables that are defined via an underlying multivariate normal distribution with a threshold specification. The classification rule is based on the comparison of the observed data logarithm probability…
Descriptors: Factor Analysis, Discriminant Analysis, Probability, Monte Carlo Methods