NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Korevaar, Elizabeth; Turner, Simon L.; Forbes, Andrew B.; Karahalios, Amalia; Taljaard, Monica; McKenzie, Joanne E. – Research Synthesis Methods, 2023
Interrupted time series (ITS) are often meta-analysed to inform public health and policy decisions but examination of the statistical methods for ITS analysis and meta-analysis in this context is limited. We simulated meta-analyses of ITS studies with continuous outcome data, analysed the studies using segmented linear regression with two…
Descriptors: Meta Analysis, Maximum Likelihood Statistics, Factor Analysis, Public Health
Peer reviewed Peer reviewed
Direct linkDirect link
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; DiStefano, Christine; Zheng, Xiaying; Liu, Ren; Jiang, Zhehan – International Journal of Behavioral Development, 2021
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML…
Descriptors: Growth Models, Maximum Likelihood Statistics, Factor Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Shi, Dexin; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual…
Descriptors: Structural Equation Models, Computation, Maximum Likelihood Statistics, Least Squares Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Koziol, Natalie A.; Bovaird, James A. – Educational and Psychological Measurement, 2018
Evaluations of measurement invariance provide essential construct validity evidence--a prerequisite for seeking meaning in psychological and educational research and ensuring fair testing procedures in high-stakes settings. However, the quality of such evidence is partly dependent on the validity of the resulting statistical conclusions. Type I or…
Descriptors: Computation, Tests, Error of Measurement, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel B.; Thompson, Marilyn S.; Levy, Roy; Lo, Wen-Juo – Educational and Psychological Measurement, 2015
Traditional parallel analysis (T-PA) estimates the number of factors by sequentially comparing sample eigenvalues with eigenvalues for randomly generated data. Revised parallel analysis (R-PA) sequentially compares the "k"th eigenvalue for sample data to the "k"th eigenvalue for generated data sets, conditioned on"k"-…
Descriptors: Factor Analysis, Error of Measurement, Accuracy, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Koran, Jennifer – Measurement and Evaluation in Counseling and Development, 2016
Proactive preliminary minimum sample size determination can be useful for the early planning stages of a latent variable modeling study to set a realistic scope, long before the model and population are finalized. This study examined existing methods and proposed a new method for proactive preliminary minimum sample size determination.
Descriptors: Factor Analysis, Sample Size, Models, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Vaughan, Robert; Laborde, Sylvain – Measurement in Physical Education and Exercise Science, 2018
The purpose of this study was to assess the psychometrics properties of the Emotional Intelligence Scale and assess the measurement invariance across elite (n = 367), amateur (n = 629), and non-athletes (n = 550). In total, 1,546 participants from various sports completed the emotional intelligence scale. Several competing models were compared…
Descriptors: Psychometrics, Emotional Intelligence, Measures (Individuals), Athletes
Peer reviewed Peer reviewed
Direct linkDirect link
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Previous Page | Next Page »
Pages: 1  |  2  |  3