Publication Date
In 2025 | 3 |
Since 2024 | 17 |
Since 2021 (last 5 years) | 34 |
Since 2016 (last 10 years) | 66 |
Since 2006 (last 20 years) | 155 |
Descriptor
Factor Analysis | 229 |
Simulation | 229 |
Correlation | 62 |
Item Response Theory | 58 |
Models | 57 |
Evaluation Methods | 50 |
Statistical Analysis | 48 |
Comparative Analysis | 47 |
Sample Size | 47 |
Test Items | 39 |
Computation | 38 |
More ▼ |
Source
Author
Cai, Li | 4 |
De Champlain, Andre | 3 |
Finch, Holmes | 3 |
Finch, W. Holmes | 3 |
French, Brian F. | 3 |
Gessaroli, Marc E. | 3 |
Kiers, Henk A. L. | 3 |
Liu, Yan | 3 |
Molenaar, Peter C. M. | 3 |
Nandakumar, Ratna | 3 |
Reckase, Mark D. | 3 |
More ▼ |
Publication Type
Education Level
Higher Education | 14 |
Postsecondary Education | 8 |
Elementary Education | 5 |
High Schools | 4 |
Secondary Education | 4 |
Elementary Secondary Education | 3 |
Adult Education | 2 |
Grade 3 | 2 |
Grade 4 | 2 |
Grade 6 | 2 |
Intermediate Grades | 2 |
More ▼ |
Audience
Researchers | 5 |
Location
France | 3 |
United States | 2 |
Belgium | 1 |
Canada (Calgary) | 1 |
China | 1 |
China (Beijing) | 1 |
Finland | 1 |
Germany | 1 |
Hong Kong | 1 |
Italy | 1 |
Japan | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Does not meet standards | 1 |
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Tugay Kaçak; Abdullah Faruk Kiliç – International Journal of Assessment Tools in Education, 2025
Researchers continue to choose PCA in scale development and adaptation studies because it is the default setting and overestimates measurement quality. When PCA is utilized in investigations, the explained variance and factor loadings can be exaggerated. PCA, in contrast to the models given in the literature, should be investigated in…
Descriptors: Factor Analysis, Monte Carlo Methods, Mathematical Models, Sample Size
Dexin Shi; Bo Zhang; Ren Liu; Zhehan Jiang – Educational and Psychological Measurement, 2024
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and…
Descriptors: Goodness of Fit, Factor Analysis, Simulation, Accuracy
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Karl Schweizer; Andreas Gold; Dorothea Krampen; Stefan Troche – Educational and Psychological Measurement, 2024
Conceptualizing two-variable disturbances preventing good model fit in confirmatory factor analysis as item-level method effects instead of correlated residuals avoids violating the principle that residual variation is unique for each item. The possibility of representing such a disturbance by a method factor of a bifactor measurement model was…
Descriptors: Correlation, Factor Analysis, Measurement Techniques, Item Analysis
André Beauducel; Norbert Hilger; Tobias Kuhl – Educational and Psychological Measurement, 2024
Regression factor score predictors have the maximum factor score determinacy, that is, the maximum correlation with the corresponding factor, but they do not have the same inter-correlations as the factors. As it might be useful to compute factor score predictors that have the same inter-correlations as the factors, correlation-preserving factor…
Descriptors: Scores, Factor Analysis, Correlation, Predictor Variables
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Christopher E. Shank – ProQuest LLC, 2024
This dissertation compares the performance of equivalence test (EQT) and null hypothesis test (NHT) procedures for identifying invariant and noninvariant factor loadings under a range of experimental manipulations. EQT is the statistically appropriate approach when the research goal is to find evidence of group similarity rather than group…
Descriptors: Factor Analysis, Goodness of Fit, Intervals, Comparative Analysis
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Cosemans, Tim; Rosseel, Yves; Gelper, Sarah – Educational and Psychological Measurement, 2022
Exploratory graph analysis (EGA) is a commonly applied technique intended to help social scientists discover latent variables. Yet, the results can be influenced by the methodological decisions the researcher makes along the way. In this article, we focus on the choice regarding the number of factors to retain: We compare the performance of the…
Descriptors: Social Science Research, Research Methodology, Graphs, Factor Analysis
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems