NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
International Adult Literacy…1
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Xinya; Cao, Chunhua – Journal of Experimental Education, 2023
To evaluate multidimensional factor structure, a popular method that combines features of confirmatory and exploratory factor analysis is Bayesian structural equation modeling with small-variance normal priors (BSEM-N). This simulation study evaluated BSEM-N as a variable selection and parameter estimation tool in factor analysis with sparse…
Descriptors: Factor Analysis, Bayesian Statistics, Structural Equation Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
E. Damiano D'Urso; Jesper Tijmstra; Jeroen K. Vermunt; Kim De Roover – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) is required for validly comparing latent constructs measured by multiple ordinal self-report items. Non-invariances may occur when disregarding (group differences in) an acquiescence response style (ARS; an agreeing tendency regardless of item content). If non-invariance results solely from neglecting ARS, one should…
Descriptors: Error of Measurement, Structural Equation Models, Construct Validity, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Manuel T. Rein; Jeroen K. Vermunt; Kim De Roover; Leonie V. D. E. Vogelsmeier – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of positive and negative affect over time. An intuitive approach is to first estimate the measurement model of the latent variables, then compute factor scores, and finally use these factor scores as observed scores in vector autoregressive…
Descriptors: Measurement Techniques, Factor Analysis, Scores, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Fu, Yuanshu; Wen, Zhonglin; Wang, Yang – Educational and Psychological Measurement, 2022
Composite reliability, or coefficient omega, can be estimated using structural equation modeling. Composite reliability is usually estimated under the basic independent clusters model of confirmatory factor analysis (ICM-CFA). However, due to the existence of cross-loadings, the model fit of the exploratory structural equation model (ESEM) is…
Descriptors: Comparative Analysis, Structural Equation Models, Factor Analysis, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael – Applied Developmental Science, 2017
Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…
Descriptors: Factor Analysis, Structural Equation Models, Correlation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Nik Nazli, Nik Nadian Nisa; Sheikh Khairudin, Sheikh Muhamad Hizam – Journal of Workplace Learning, 2018
Purpose: This paper aims to identify the relationship between organizational learning culture, psychological contract breach, work engagement, training simulation and transfer of training, to examine the effect of transfer of training on organizational citizenship behaviour and to determine the mediating effect of transfer of training on the…
Descriptors: Transfer of Training, Workplace Learning, Foreign Countries, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Merkle, Edgar C.; Zeileis, Achim – Psychometrika, 2013
The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we study tests of measurement…
Descriptors: Factor Analysis, Evaluation Methods, Tests, Psychometrics
Sen, Rohini – ProQuest LLC, 2012
In the last five decades, research on the uses of response time has extended into the field of psychometrics (Schnikpe & Scrams, 1999; van der Linden, 2006; van der Linden, 2007), where interest has centered around the usefulness of response time information in item calibration and person measurement within an item response theory. framework.…
Descriptors: Structural Equation Models, Reaction Time, Item Response Theory, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…
Descriptors: Structural Equation Models, Mixed Methods Research, Statistical Analysis, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Descriptors: Structural Equation Models, Differences, Statistical Analysis, Models
Previous Page | Next Page »
Pages: 1  |  2