Publication Date
In 2025 | 6 |
Since 2024 | 12 |
Since 2021 (last 5 years) | 28 |
Since 2016 (last 10 years) | 1562 |
Since 2006 (last 20 years) | 2596 |
Descriptor
Factor Analysis | 3141 |
Statistical Analysis | 3141 |
Foreign Countries | 1603 |
Correlation | 1059 |
Questionnaires | 907 |
Student Attitudes | 604 |
Likert Scales | 540 |
Measures (Individuals) | 467 |
Factor Structure | 411 |
Gender Differences | 391 |
Structural Equation Models | 381 |
More ▼ |
Source
Author
Vincent, Jack E. | 31 |
Hakstian, A. Ralph | 12 |
Tsai, Chin-Chung | 11 |
Craven, Rhonda G. | 7 |
Devos, Geert | 6 |
Dziuban, Charles D. | 6 |
Jennrich, Robert I. | 6 |
Koul, Ravinder | 6 |
Liang, Jyh-Chong | 6 |
Martin, Andrew J. | 6 |
Teo, Timothy | 6 |
More ▼ |
Publication Type
Education Level
Location
Turkey | 320 |
China | 81 |
Australia | 78 |
Taiwan | 70 |
Spain | 57 |
Germany | 56 |
South Korea | 50 |
Canada | 49 |
United States | 46 |
Hong Kong | 44 |
Finland | 42 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 2 |
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2025
Most methods for structural equation modeling (SEM) focused on the analysis of covariance matrices. However, "Historically, interesting psychological theories have been phrased in terms of correlation coefficients." This might be because data in social and behavioral sciences typically do not have predefined metrics. While proper methods…
Descriptors: Correlation, Statistical Analysis, Models, Tests
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Lingbo Tong; Wen Qu; Zhiyong Zhang – Grantee Submission, 2025
Factor analysis is widely utilized to identify latent factors underlying the observed variables. This paper presents a comprehensive comparative study of two widely used methods for determining the optimal number of factors in factor analysis, the K1 rule, and parallel analysis, along with a more recently developed method, the bass-ackward method.…
Descriptors: Factor Analysis, Monte Carlo Methods, Statistical Analysis, Sample Size
Raykov, Tenko; Anthony, James C.; Menold, Natalja – Educational and Psychological Measurement, 2023
The population relationship between coefficient alpha and scale reliability is studied in the widely used setting of unidimensional multicomponent measuring instruments. It is demonstrated that for any set of component loadings on the common factor, regardless of the extent of their inequality, the discrepancy between alpha and reliability can be…
Descriptors: Correlation, Evaluation Research, Reliability, Measurement Techniques
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2021
Methods for optimal factor rotation of two-facet loading matrices have recently been proposed. However, the problem of the correct number of factors to retain for rotation of two-facet loading matrices has rarely been addressed in the context of exploratory factor analysis. Most previous studies were based on the observation that two-facet loading…
Descriptors: Factor Analysis, Statistical Analysis, Correlation, Models
Schamberger, Tamara; Schuberth, Florian; Henseler, Jörg – International Journal of Behavioral Development, 2023
Research in human development often relies on composites, that is, composed variables such as indices. Their composite nature renders these variables inaccessible to conventional factor-centric psychometric validation techniques such as confirmatory factor analysis (CFA). In the context of human development research, there is currently no…
Descriptors: Individual Development, Factor Analysis, Statistical Analysis, Structural Equation Models
Raykov, Tenko; Calvocoressi, Lisa – Educational and Psychological Measurement, 2021
A procedure for evaluating the average R-squared index for a given set of observed variables in an exploratory factor analysis model is discussed. The method can be used as an effective aid in the process of model choice with respect to the number of factors underlying the interrelationships among studied measures. The approach is developed within…
Descriptors: Factor Analysis, Structural Equation Models, Statistical Analysis, Selection
Xia, Yan – Educational and Psychological Measurement, 2021
Despite the existence of many methods for determining the number of factors, none outperforms the others under every condition. This study compares traditional parallel analysis (TPA), revised parallel analysis (RPA), Kaiser's rule, minimum average partial, sequential X[superscript 2], and sequential root mean square error of approximation,…
Descriptors: Statistical Analysis, Factor Analysis, Accuracy, Goodness of Fit
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Wind, Stefanie A.; Schumacker, Randall E. – Educational and Psychological Measurement, 2021
Researchers frequently use Rasch models to analyze survey responses because these models provide accurate parameter estimates for items and examinees when there are missing data. However, researchers have not fully considered how missing data affect the accuracy of dimensionality assessment in Rasch analyses such as principal components analysis…
Descriptors: Item Response Theory, Data, Factor Analysis, Accuracy
Goretzko, David – Educational and Psychological Measurement, 2022
Determining the number of factors in exploratory factor analysis is arguably the most crucial decision a researcher faces when conducting the analysis. While several simulation studies exist that compare various so-called factor retention criteria under different data conditions, little is known about the impact of missing data on this process.…
Descriptors: Factor Analysis, Research Problems, Data, Prediction