NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
What Works Clearinghouse Rating
Showing 1 to 15 of 260 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Njål Foldnes; Jonas Moss; Steffen Grønneberg – Structural Equation Modeling: A Multidisciplinary Journal, 2025
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under non-normality. These test statistics have limit distributions characterized by eigenvalues whose estimates are highly unstable and biased in known directions. To take this into account, we design model-based trend predictions to approximate the…
Descriptors: Goodness of Fit, Structural Equation Models, Robustness (Statistics), Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Schamberger, Tamara; Schuberth, Florian; Henseler, Jörg – International Journal of Behavioral Development, 2023
Research in human development often relies on composites, that is, composed variables such as indices. Their composite nature renders these variables inaccessible to conventional factor-centric psychometric validation techniques such as confirmatory factor analysis (CFA). In the context of human development research, there is currently no…
Descriptors: Individual Development, Factor Analysis, Statistical Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Yan – Educational and Psychological Measurement, 2021
Despite the existence of many methods for determining the number of factors, none outperforms the others under every condition. This study compares traditional parallel analysis (TPA), revised parallel analysis (RPA), Kaiser's rule, minimum average partial, sequential X[superscript 2], and sequential root mean square error of approximation,…
Descriptors: Statistical Analysis, Factor Analysis, Accuracy, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The present study describes an R function that implements six corrective procedures developed by Bartlett, Swain, and Yuan in the correction of 21 statistics associated with the omnibus Chi-square test, the residuals, or fit indices in confirmatory factor analysis (CFA) and structural equation modeling (SEM).
Descriptors: Statistical Analysis, Goodness of Fit, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; Lee, Taehun; Fairchild, Amanda J.; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
This study compares two missing data procedures in the context of ordinal factor analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple imputation (MI). We examine which procedure demonstrates parameter estimates and model fit indices closer to those of complete data. The performance of PD and MI are compared under a…
Descriptors: Factor Analysis, Statistical Analysis, Computation, Goodness of Fit
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sirganci, Gozde; Uyumaz, Gizem; Yandi, Alperen – International Journal of Assessment Tools in Education, 2020
It is necessary to examine the measurement invariance (MI) among groups in studies where different groups are compared by using a measurement instrument. Most of the studies, measurement invariance is tested with multiple group confirmatory factor analysis. This model applies many model adjustments based on the modification indexes. Therefore, it…
Descriptors: Foreign Countries, Achievement Tests, International Assessment, Secondary School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis
Van de Vijver, Fons J. R.; Avvisati, Francesco; Davidov, Eldad; Eid, Michael; Fox, Jean-Paul; Le Donné, Noémie; Lek, Kimberley; Meuleman, Bart; Paccagnella, Marco; van de Schoot, Rens – OECD Publishing, 2019
Large-scale surveys such as the Programme for International Student Assessment (PISA), the Teaching and Learning International Survey (TALIS), and the Programme for the International Assessment of Adult Competences (PIAAC) use advanced statistical models to estimate scores of latent traits from multiple observed responses. The comparison of such…
Descriptors: Surveys, Factor Analysis, Bayesian Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hoofs, Huub; van de Schoot, Rens; Jansen, Nicole W. H.; Kant, IJmert – Educational and Psychological Measurement, 2018
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian…
Descriptors: Goodness of Fit, Bayesian Statistics, Factor Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Eaton, Philip; Willoughby, Shannon D. – Physical Review Physics Education Research, 2018
In 1995, Huffman and Heller used exploratory factor analysis to draw into question the factors of the Force Concept Inventory (FCI). Since then several papers have been published examining the factors of the FCI on larger sets of student responses and understandable factors were extracted as a result. However, none of these proposed factor models…
Descriptors: Factor Analysis, Measures (Individuals), Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
O'Donnell, Maeve B.; Shirley, Lauren A.; Park, Stacey S.; Nolen, Julian P.; Gibbons, Alyssa M.; Rosén, Lee A. – Journal of College Student Development, 2018
Several instruments exist to measure college adjustment: the Student Adaptation to College Questionnaire (SACQ; Baker & Siryk, 1989), the College Adjustment Rating Scale (Zitzow, 1984), and the College Adjustment Scales (Anton & Reed, 1991). Of these, the SACQ is the most widely used and takes a multifaceted approach to measuring college…
Descriptors: Student Adjustment, College Students, Measures (Individuals), Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, John; Zabriskie, Cabot; DeVore, Seth; Stewart, Gay – Physical Review Physics Education Research, 2018
Research on the test structure of the Force Concept Inventory (FCI) has largely been performed with exploratory methods such as factor analysis and cluster analysis. Multidimensional Item Response Theory (MIRT) provides an alternative to traditional exploratory factor analysis which allows statistical testing to identify the optimal number of…
Descriptors: Item Response Theory, Physics, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Zeller, Florian; Krampen, Dorothea; Reiß, Siegbert; Schweizer, Karl – Educational and Psychological Measurement, 2017
The item-position effect describes how an item's position within a test, that is, the number of previous completed items, affects the response to this item. Previously, this effect was represented by constraints reflecting simple courses, for example, a linear increase. Due to the inflexibility of these representations our aim was to examine…
Descriptors: Goodness of Fit, Simulation, Factor Analysis, Intelligence Tests
Dogucu, Mine – ProQuest LLC, 2017
When researchers fit statistical models to multiply imputed datasets, they have to fit the model separately for each imputed dataset. Since there are multiple datasets, there are always multiple sets of model results. It is possible for some of these sets of results not to converge while some do converge. This study examined occurrence of such a…
Descriptors: Statistical Analysis, Error of Measurement, Goodness of Fit, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  18