Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 23 |
Descriptor
Classical Conditioning | 32 |
Fear | 32 |
Animals | 21 |
Stimuli | 13 |
Brain Hemisphere Functions | 12 |
Memory | 10 |
Learning Processes | 8 |
Brain | 7 |
Context Effect | 6 |
Role | 6 |
Anxiety | 5 |
More ▼ |
Source
Learning & Memory | 32 |
Author
Publication Type
Journal Articles | 32 |
Reports - Research | 28 |
Information Analyses | 2 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Atlas, Lauren Y.; Phelps, Elizabeth A. – Learning & Memory, 2018
Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive…
Descriptors: Fear, Stimuli, Hypothesis Testing, Visual Stimuli
Jones, Carolyn E.; Monfils, Marie-H. – Learning & Memory, 2016
Traumatic experiences early in life can contribute to the development of mood and anxiety disorders that manifest during adolescence and young adulthood. In young rats exposed to acute fear or stress, alterations in neural development can lead to enduring behavioral abnormalities. Here, we used a modified extinction intervention…
Descriptors: Adolescents, Fear, Juvenile Justice, Classical Conditioning
Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E. – Learning & Memory, 2013
Modifications in chromatin structure have been widely implicated in memory and cognition, most notably using hippocampal-dependent memory paradigms including object recognition, spatial memory, and contextual fear memory. Relatively little is known, however, about the role of chromatin-modifying enzymes in amygdala-dependent memory formation.…
Descriptors: Fear, Memory, Brain, Classical Conditioning
Cornwell, Brian R.; Overstreet, Cassie; Krimsky, Marissa; Grillon, Christian – Learning & Memory, 2013
Conventional wisdom dictates we must face our fears to conquer them. This idea is embodied in exposure-based treatments for anxiety disorders, where the intent of exposure is to reverse a history of avoidant behavior that is thought to fuel a patient's irrational fears. We tested in humans the relationship between fear and avoidance by combining…
Descriptors: Fear, Learning Processes, Classical Conditioning, Behavior
Powell, Elizabeth J.; Escobar, Martha; Kimble, Whitney – Learning & Memory, 2013
Spontaneous recovery in extinction appears to be inversely related to the acquisition-to-extinction interval, but it remains unclear why this is the case. Rat subjects trained with one of three interference paradigms exhibited less spontaneous recovery of the original response after delayed than immediate interference, regardless of whether…
Descriptors: Fear, Classical Conditioning, Learning Processes, Interference (Learning)
Nasser, Helen M.; McNally, Gavan P. – Learning & Memory, 2013
We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of…
Descriptors: Animals, Fear, Motivation, Classical Conditioning
Chan, Wan Yee Macy; Leung, Hiu T.; Westbrook, R. Frederick; McNally, Gavan P. – Learning & Memory, 2010
In six experiments we studied the effects of a single re-exposure to a conditioned stimulus (CS; "retrieval trial") prior to extinction training (extinction-reconsolidation boundary) on the development of and recovery from fear extinction. A single retrieval trial prior to extinction training significantly augmented the renewal and reinstatement…
Descriptors: Stimuli, Learning Processes, Context Effect, Classical Conditioning
Maddox, Stephanie A.; Monsey, Melissa S.; Schafe, Glenn E. – Learning & Memory, 2011
The immediate-early gene early growth response gene-1 (EGR-1, zif-268) has been extensively studied in synaptic plasticity and memory formation in a variety of memory systems. However, a convincing role for EGR-1 in amygdala-dependent memory consolidation processes has yet to emerge. In the present study, we have examined the role of EGR-1 in the…
Descriptors: Classical Conditioning, Short Term Memory, Long Term Memory, Fear
Muravieva, Elizaveta V.; Alberini, Cristina M. – Learning & Memory, 2010
Previous studies suggested that the beta-adrenergic receptor antagonist propranolol might be a novel, potential treatment for post-traumatic stress disorder (PTSD). This hypothesis stemmed mainly from rodent studies showing that propranolol interferes with the reconsolidation of Pavlovian fear conditioning (FC). However, subsequent investigations…
Descriptors: Investigations, Posttraumatic Stress Disorder, Classical Conditioning, Memory
Kim, Jee Hyun; Richardson, Rick – Learning & Memory, 2009
Several recent studies report that neurotransmitters that are critically involved in extinction in adult rats are not important for extinction in young rats. Specifically, pretest injection of the [gamma]-aminobutryic acid (GABA) receptor inverse agonist FG7142 has no effect on extinction in postnatal day (P)17 rats, although it reverses…
Descriptors: Animals, Fear, Pretests Posttests, Experiments
Bradfield, Laura A.; McNally, Gavan P. – Learning & Memory, 2010
We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…
Descriptors: Stimuli, Classical Conditioning, Fear, Child Development
King, Stanley O., II; Williams, Cedric L. – Learning & Memory, 2009
Exposure to novel contexts produce heightened states of arousal and biochemical changes in the brain to consolidate memory. However, processes permitting simple exposure to unfamiliar contexts to elevate sympathetic output and to improve memory are poorly understood. This shortcoming was addressed by examining how novelty-induced changes in…
Descriptors: Animals, Stimuli, Classical Conditioning, Memory
Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen – Learning & Memory, 2009
The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…
Descriptors: Stimuli, Classical Conditioning, Associative Learning, Brain Hemisphere Functions
Chang, Chun-hui; Maren, Stephen – Learning & Memory, 2009
Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying…
Descriptors: Intervals, Classical Conditioning, Fear, Anxiety
Cole, Sindy; McNally, Gavan P. – Learning & Memory, 2009
Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the…
Descriptors: Classical Conditioning, Parent Child Relationship, Fear, Learning Processes