NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 35 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ishaya Gambo; Faith-Jane Abegunde; Omobola Gambo; Roseline Oluwaseun Ogundokun; Akinbowale Natheniel Babatunde; Cheng-Chi Lee – Education and Information Technologies, 2025
The current educational system relies heavily on manual grading, posing challenges such as delayed feedback and grading inaccuracies. Automated grading tools (AGTs) offer solutions but come with limitations. To address this, "GRAD-AI" is introduced, an advanced AGT that combines automation with teacher involvement for precise grading,…
Descriptors: Automation, Grading, Artificial Intelligence, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Xuefan Li; Marco Zappatore; Tingsong Li; Weiwei Zhang; Sining Tao; Xiaoqing Wei; Xiaoxu Zhou; Naiqing Guan; Anny Chan – IEEE Transactions on Learning Technologies, 2025
The integration of generative artificial intelligence (GAI) into educational settings offers unprecedented opportunities to enhance the efficiency of teaching and the effectiveness of learning, particularly within online platforms. This study evaluates the development and application of a customized GAI-powered teaching assistant, trained…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Barrett, Michelle D.; Jiang, Bingnan; Feagler, Bridget E. – International Journal of Artificial Intelligence in Education, 2022
The appeal of a shorter testing time makes a computer adaptive testing approach highly desirable for use in multiple assessment and learning contexts. However, for those who have been tasked with designing, configuring, and deploying adaptive tests for operational use at scale, preparing an adaptive test is anything but simple. The process often…
Descriptors: Adaptive Testing, Computer Assisted Testing, Test Construction, Design Requirements
Ying Fang; Rod D. Roscoe; Danielle S. McNamara – Grantee Submission, 2023
Artificial Intelligence (AI) based assessments are commonly used in a variety of settings including business, healthcare, policing, manufacturing, and education. In education, AI-based assessments undergird intelligent tutoring systems as well as many tools used to evaluate students and, in turn, guide learning and instruction. This chapter…
Descriptors: Artificial Intelligence, Computer Assisted Testing, Student Evaluation, Evaluation Methods
Samuel S. Davidson – ProQuest LLC, 2024
Automated corrective feedback (ACF), in which a computer system helps language learners identify and correct errors in their writing or speech, is considered an important tool for language instruction by many researchers. Such systems allow learners to correct their own mistakes, thereby reducing teacher workload and potentially preventing issues…
Descriptors: Computer Assisted Testing, Automation, Student Evaluation, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tri Sedya Febrianti; Siti Fatimah; Yuni Fitriyah; Hanifah Nurhayati – International Journal of Education in Mathematics, Science and Technology, 2024
Assessing students' understanding of circle-related material through subjective tests is effective, though grading these tests can be challenging and often requires technological support. ChatGPT has shown promise in providing reliable and objective evaluations. Many teachers in Indonesia, however, continue to face difficulties integrating…
Descriptors: Artificial Intelligence, Computer Assisted Testing, Scoring, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Mustafa Yildiz; Hasan Kagan Keskin; Saadin Oyucu; Douglas K. Hartman; Murat Temur; Mücahit Aydogmus – Reading & Writing Quarterly, 2025
This study examined whether an artificial intelligence-based automatic speech recognition system can accurately assess students' reading fluency and reading level. Participants were 120 fourth-grade students attending public schools in Türkiye. Students read a grade-level text out loud while their voice was recorded. Two experts and the artificial…
Descriptors: Artificial Intelligence, Reading Fluency, Human Factors Engineering, Grade 4
Peer reviewed Peer reviewed
Direct linkDirect link
Botelho, Anthony; Baral, Sami; Erickson, John A.; Benachamardi, Priyanka; Heffernan, Neil T. – Journal of Computer Assisted Learning, 2023
Background: Teachers often rely on the use of open-ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through…
Descriptors: Natural Language Processing, Artificial Intelligence, Computer Assisted Testing, Mathematics Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Keith Cochran; Clayton Cohn; Peter Hastings; Noriko Tomuro; Simon Hughes – International Journal of Artificial Intelligence in Education, 2024
To succeed in the information age, students need to learn to communicate their understanding of complex topics effectively. This is reflected in both educational standards and standardized tests. To improve their writing ability for highly structured domains like scientific explanations, students need feedback that accurately reflects the…
Descriptors: Science Process Skills, Scientific Literacy, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Lanqin; Long, Miaolang; Chen, Bodong; Fan, Yunchao – International Journal of Educational Technology in Higher Education, 2023
Online collaborative learning is implemented extensively in higher education. Nevertheless, it remains challenging to help learners achieve high-level group performance, knowledge elaboration, and socially shared regulation in online collaborative learning. To cope with these challenges, this study proposes and evaluates a novel automated…
Descriptors: Learning Analytics, Computer Assisted Testing, Cooperative Learning, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon J. Yik; David G. Schreurs; Jeffrey R. Raker – Journal of Chemical Education, 2023
Acid-base chemistry, and in particular the Lewis acid-base model, is foundational to understanding mechanistic ideas. This is due to the similarity in language chemists use to describe Lewis acid-base reactions and nucleophile-electrophile interactions. The development of artificial intelligence and machine learning technologies has led to the…
Descriptors: Educational Technology, Formative Evaluation, Molecular Structure, Models
Hong Jiao, Editor; Robert W. Lissitz, Editor – IAP - Information Age Publishing, Inc., 2024
With the exponential increase of digital assessment, different types of data in addition to item responses become available in the measurement process. One of the salient features in digital assessment is that process data can be easily collected. This non-conventional structured or unstructured data source may bring new perspectives to better…
Descriptors: Artificial Intelligence, Natural Language Processing, Psychometrics, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Barno Sayfutdinovna Abdullaeva; Diyorjon Abdullaev; Feruza Abulkosimovna Rakhmatova; Laylo Djuraeva; Nigora Asqaraliyevna Sulaymonova; Zebo Fazliddinovna Shamsiddinova; Oynisa Khamraeva – Language Testing in Asia, 2024
Acquiring technological literacy and acceptance has a significant influence on academic emotion regulation (AER), academic resilience (AR), willingness to communicate (WTC), and academic enjoyment (AE), which are crucial for the success of university students. However, this area has not been adequately explored in research, particularly in the…
Descriptors: Technological Literacy, Emotional Response, Self Control, Resilience (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Qianru Li; Kan Kan Chan – Education and Information Technologies, 2024
Mobile-assisted Language Learning (MALL) has been widely adopted in teaching and learning, yet there has been scant research concerning speaking test adaptation. An emerging type of mobile application is designed to facilitate test takers' performance in a high-stakes speaking test (e.g., the International English Language Testing System (IELTS)).…
Descriptors: Student Attitudes, Test Wiseness, Computer Assisted Testing, Handheld Devices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nejdet Karadag – Journal of Educational Technology and Online Learning, 2023
The purpose of this study is to examine the impact of artificial intelligence (AI) on online assessment in the context of opportunities and threats based on the literature. To this end, 19 articles related to the AI tool ChatGPT and online assessment were analysed through rapid literature review. In the content analysis, the themes of "AI's…
Descriptors: Artificial Intelligence, Computer Assisted Testing, Natural Language Processing, Grading
Previous Page | Next Page »
Pages: 1  |  2  |  3