NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xinming Chen; Ziqian Zhou; Malila Prado – International Journal of Assessment Tools in Education, 2025
This study explores the efficacy of ChatGPT-3.5, an AI chatbot, used as an Automatic Essay Scoring (AES) system and feedback provider for IELTS essay preparation. It investigates the alignment between scores given by ChatGPT-3.5 and those assigned by official IELTS examiners to establish its reliability as an AES. It also identifies the strategies…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xu; Ouyang, Fan; Liu, Jianwen; Wei, Chengkun; Chen, Wenzhi – Journal of Educational Computing Research, 2023
The computer-supported writing assessment (CSWA) has been widely used to reduce instructor workload and provide real-time feedback. Interpretability of CSWA draws extensive attention because it can benefit the validity, transparency, and knowledge-aware feedback of academic writing assessments. This study proposes a novel assessment tool,…
Descriptors: Computer Assisted Testing, Writing Evaluation, Feedback (Response), Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Keith Cochran; Clayton Cohn; Peter Hastings; Noriko Tomuro; Simon Hughes – International Journal of Artificial Intelligence in Education, 2024
To succeed in the information age, students need to learn to communicate their understanding of complex topics effectively. This is reflected in both educational standards and standardized tests. To improve their writing ability for highly structured domains like scientific explanations, students need feedback that accurately reflects the…
Descriptors: Science Process Skills, Scientific Literacy, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaoming Xi – Language Assessment Quarterly, 2023
Following the burgeoning growth of artificial intelligence (AI) and machine learning (ML) applications in language assessment in recent years, the meteoric rise of ChatGPT and its sweeping applications in almost every sector have left us in awe, scrambling to catch up by developing theories and best practices. This special issue features studies…
Descriptors: Artificial Intelligence, Theory Practice Relationship, Language Tests, Man Machine Systems
Hong Jiao, Editor; Robert W. Lissitz, Editor – IAP - Information Age Publishing, Inc., 2024
With the exponential increase of digital assessment, different types of data in addition to item responses become available in the measurement process. One of the salient features in digital assessment is that process data can be easily collected. This non-conventional structured or unstructured data source may bring new perspectives to better…
Descriptors: Artificial Intelligence, Natural Language Processing, Psychometrics, Computer Assisted Testing
Panaite, Marilena; Ruseti, Stefan; Dascalu, Mihai; Balyan, Renu; McNamara, Danielle S.; Trausan-Matu, Stefan – Grantee Submission, 2019
Intelligence Tutoring Systems (ITSs) focus on promoting knowledge acquisition, while providing relevant feedback during students' practice. Self-explanation practice is an effective method used to help students understand complex texts by leveraging comprehension. Our aim is to introduce a deep learning neural model for automatically scoring…
Descriptors: Computer Assisted Testing, Scoring, Intelligent Tutoring Systems, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Biju Theruvil Sayed; Zein Bassam Bani Younes; Ahmad Alkhayyat; Iroda Adhamova; Habesha Teferi – Language Testing in Asia, 2024
There has been a surge in employing artificial intelligence (AI) in all areas of language pedagogy, not the least among them language testing and assessment. This study investigated the effects of AI-powered tools on English as a Foreign Language (EFL) learners' speaking skills, psychological well-being, autonomy, and academic buoyancy. Using a…
Descriptors: Artificial Intelligence, Language Tests, Success, Speech Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Fu, Shixuan; Gu, Huimin; Yang, Bo – British Journal of Educational Technology, 2020
Traditional educational giants and natural language processing companies have launched several artificial intelligence (AI)-enabled digital learning applications to facilitate language learning. One typical application of AI in digital language education is the automatic scoring application that provides feedback on pronunciation repeat outcomes.…
Descriptors: Affordances, Artificial Intelligence, Computer Assisted Testing, Scoring
Xiaoming Zhai, Editor; Joseph Krajcik, Editor – Oxford University Press, 2025
In the age of rapid technological advancements, the integration of Artificial Intelligence (AI), machine learning (ML), and large language models (LLMs) in Science, Technology, Engineering, and Mathematics (STEM) education has emerged as a transformative force, reshaping pedagogical approaches and assessment methodologies. "Uses of AI in STEM…
Descriptors: Artificial Intelligence, STEM Education, Technology Uses in Education, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
L. Hannah; E. E. Jang; M. Shah; V. Gupta – Language Assessment Quarterly, 2023
Machines have a long-demonstrated ability to find statistical relationships between qualities of texts and surface-level linguistic indicators of writing. More recently, unlocked by artificial intelligence, the potential of using machines to identify content-related writing trait criteria has been uncovered. This development is significant,…
Descriptors: Validity, Automation, Scoring, Writing Assignments
Peer reviewed Peer reviewed
Direct linkDirect link
Sari, Elif; Han, Turgay – Reading Matrix: An International Online Journal, 2021
Providing both effective feedback applications and reliable assessment practices are two central issues in ESL/EFL writing instruction contexts. Giving individual feedback is very difficult in crowded classes as it requires a great amount of time and effort for instructors. Moreover, instructors likely employ inconsistent assessment procedures,…
Descriptors: Automation, Writing Evaluation, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, H.; Magooda, A.; Litman, D.; Correnti, R.; Wang, E.; Matsumura, L. C.; Howe, E.; Quintana, R. – Grantee Submission, 2019
Writing a good essay typically involves students revising an initial paper draft after receiving feedback. We present eRevise, a web-based writing and revising environment that uses natural language processing features generated for rubric-based essay scoring to trigger formative feedback messages regarding students' use of evidence in…
Descriptors: Formative Evaluation, Essays, Writing (Composition), Revision (Written Composition)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Allen, Laura K.; Jacovina, Matthew E.; Dascalu, Mihai; Roscoe, Rod D.; Kent, Kevin M.; Likens, Aaron D.; McNamara, Danielle S. – International Educational Data Mining Society, 2016
This study investigates how and whether information about students' writing can be recovered from basic behavioral data extracted during their sessions in an intelligent tutoring system for writing. We calculate basic and time-sensitive keystroke indices based on log files of keys pressed during students' writing sessions. A corpus of prompt-based…
Descriptors: Writing Processes, Intelligent Tutoring Systems, Natural Language Processing, Feedback (Response)
Previous Page | Next Page ยป
Pages: 1  |  2