NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…10
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baucks, Frederik; Wiskott, Laurenz – International Educational Data Mining Society, 2022
Curriculum research is an important tool for understanding complex processes within a degree program. In particular, stochastic graphical models and simulations on related curriculum graphs have been used to make predictions about dropout rates, grades, and degree completion time. There exists, however, little research on changes in the curriculum…
Descriptors: Curriculum Development, Educational Change, Educational Policy, Prerequisites
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sturludóttir, Erla Guðrún; Arnardóttir, Eydís; Hjálmtýsson, Gísli; Óskarsdóttir, María – International Educational Data Mining Society, 2021
Gaining insight into course choices holds significant value for universities, especially those who aim for flexibility in their programs and wish to adapt quickly to changing demands of the job market. However, little emphasis has been put on utilizing the large amount of educational data to understand these course choices. Here, we use network…
Descriptors: Course Selection (Students), Undergraduate Students, Engineering Education, Business Administration Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fonseca, Samuel C.; Pereira, Filipe Dwan; Oliveira, Elaine H. T.; Oliveira, David B. F.; Carvalho, Leandro S. G.; Cristea, Alexandra I. – International Educational Data Mining Society, 2020
As programming must be learned by doing, introductory programming course learners need to solve many problems, e.g., on systems such as 'Online Judges'. However, as such courses are often compulsory for non-Computer Science (nonCS) undergraduates, this may cause difficulties to learners that do not have the typical intrinsic motivation for…
Descriptors: Programming, Introductory Courses, Computer Science Education, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Backenköhler, Michael; Scherzinger, Felix; Singla, Adish; Wolf, Verena – International Educational Data Mining Society, 2018
Course selection can be a daunting task, especially for first year students. Sub-optimal selection can lead to bad performance of students and increase the dropout rate. Given the availability of historic data about student performances, it is possible to aid students in the selection of appropriate courses. Here, we propose a method to compose a…
Descriptors: Data, Course Selection (Students), Information Utilization, Individualized Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2016
Effective mining of data from online submission systems offers the potential to improve educational outcomes by identifying student habits and behaviours and their relationship with levels of achievement. In particular, it may assist in identifying students at risk of performing poorly, allowing for early intervention. In this paper we investigate…
Descriptors: Data Collection, Student Behavior, Academic Achievement, Correlation
Sharma, Kshitij; Jermann, Patrick; Dillenbourg, Pierre – International Educational Data Mining Society, 2015
Current schemes to categorise MOOC students result from a single view on the population which either contains the engagement of the students or demographics or self reported motivation. We propose a new hierarchical student categorisation, which uses common online activities capturing both engagement and achievement of MOOC students. A first level…
Descriptors: Foreign Countries, Online Courses, Large Group Instruction, Student Characteristics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals