NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 76 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boxuan Ma; Li Chen; Shin’ichi Konomi – International Association for Development of the Information Society, 2024
Generative artificial intelligence (AI) tools like ChatGPT are becoming increasingly common in educational settings, especially in programming education. However, the impact of these tools on the learning process, student performance, and best practices for their integration remains underexplored. This study examines student experiences and…
Descriptors: Artificial Intelligence, Computer Science Education, Programming, Computer Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lokkila, Erno; Christopoulos, Athanasios; Laakso, Mikko-Jussi – Informatics in Education, 2023
Prior programming knowledge of students has a major impact on introductory programming courses. Those with prior experience often seem to breeze through the course. Those without prior experience see others breeze through the course and disengage from the material or drop out. The purpose of this study is to demonstrate that novice student…
Descriptors: Prior Learning, Programming, Computer Science Education, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Harry Barton Essel; Dimitrios Vlachopoulos; Henry Nunoo-Mensah; John Opuni Amankwa – British Journal of Educational Technology, 2025
Conversational user interfaces (CUI), including voice interfaces, which allow users to converse with computers via voice, are gaining wide popularity. VoiceBots allow users to receive a response in real-time, regardless of the communication device. VoiceBots have been explored in fields such as customer service to automate repetitive queries and…
Descriptors: Foreign Countries, Artificial Intelligence, Program Effectiveness, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sukan Saeliang; Pinanta Chatwattana – International Education Studies, 2025
The project-based learning model via generative artificial intelligence, or PjBL model via Gen-AI, is a research tool that was initiated based on the concept of project-based learning management focusing mainly on self-directed learning, in which learners are able to learn and practice through the projects they are interested in as to their…
Descriptors: Active Learning, Student Projects, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Seongyune Choi; Hyeoncheol Kim – Education and Information Technologies, 2025
Attention to programming education from K-12 to higher education has been growing with the aim of fostering students' programming ability. This ability involves employing appropriate algorithms and computer codes to solve problems and can be enhanced through practical learning. However, in a formal educational setting, it is challenging to provide…
Descriptors: Foreign Countries, High School Freshmen, Programming, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Hao-Chiang Koong Lin; Chun-Hsiung Tseng; Nian-Shing Chen – Educational Technology & Society, 2025
In recent years, learning programming has been a challenge for both learners and educators. How to enhance student engagement and learning outcomes has been a significant concern for researchers. This study examines the effects of AI-based pedagogical agents on students' learning experiences in programming courses, focusing on web game development…
Descriptors: Programming, Learner Engagement, Self Efficacy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Chun-Hsiung Tseng; Hao-Chiang Koong Lin; Andrew Chih-Wei Huang; Jia-Rou Lin – Cogent Education, 2023
This study explores the use of machine learning and physiological signals to enhance learning performance based on students' personality traits. Traditional personality assessment methods often yield unreliable responses, prompting the need for a novel approach utilizing objective data collection through physiological signals. Participants from a…
Descriptors: Artificial Intelligence, Personality Traits, Foreign Countries, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Seong-Won Kim; Youngjun Lee – Education and Information Technologies, 2024
In this study, the influence of socio-cultural factors on attitudes toward artificial intelligence (AI) was investigated. In total, 1,677 Korean middle school students were selected to participate, and a test tool was used to measure the attitude toward AI. As a result, according to socio-cultural factors, middle school students' attitudes toward…
Descriptors: Foreign Countries, Middle School Students, Artificial Intelligence, Sociocultural Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Hongzhi Yang; Chuan Gao; Hui-zhong Shen – Education and Information Technologies, 2024
Recently, artificial intelligence (AI)-programmed automated writing evaluation (AWE) has attracted increasing attention in language research. Using a small data set arising from an analysis of five Chinese university-level English as a foreign language (EFL) students' submissions, this paper examined in detail how EFL students interacted with the…
Descriptors: Artificial Intelligence, Programming, Writing Evaluation, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Zhi Liu; Huimin Duan; Shiqi Liu; Rui Mu; Sannyuya Liu; Zongkai Yang – Educational Technology & Society, 2024
Conversational agents (CAs) primarily adopt knowledge scaffolding (KS) or emotional scaffolding (ES) to intervene in learners' knowledge gain and emotional experience in online learning. However, the ill-defined design for KS and ES, as well as insufficient understanding of their interactive effects on learning outcomes, have hindered the…
Descriptors: Electronic Learning, Achievement Gains, Knowledge Level, Emotional Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Lin Zhang; Qiang Jiang; Weiyan Xiong; Wei Zhao – Journal of Educational Computing Research, 2025
This study seeks to deepen the understanding of the direct and indirect effects of human-computer dialogic interaction programming activities, facilitated by ChatGPT, on student engagement. Data were collected from 109 Chinese high school students who engaged in programming tasks using either ChatGPT-driven dialogic interaction or traditional pair…
Descriptors: Artificial Intelligence, Computer Software, Computer Science Education, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tanaka, Tetsuo; Ueda, Mari – International Association for Development of the Information Society, 2023
In this study, the authors have developed a web-based programming exercise system currently implemented in classrooms. This system not only provides students with a web-based programming environment but also tracks the time spent on exercises, logging operations such as program editing, building, execution, and testing. Additionally, it records…
Descriptors: Scores, Prediction, Programming, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Anas Husain – Journal of Information Technology Education: Research, 2024
Aim/Purpose: This study aims to investigate the perceptions of programming instructors among the Information Technology faculty members at AL al-Bayt University regarding the effectiveness of ChatGPT in supporting the programming instructional process. This study also aims to explore their experiences concerning the potential benefits and adverse…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6