NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas, Sujith; Srinivasan, Narayanan – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
In classification learning of artificial stimuli, participants learn the perfectly diagnostic dimension better than the partially diagnostic dimensions. Also, there is a strong preference for a unidimensional categorization based on the perfectly diagnostic dimension. In a different experimental procedure, called array-based classification task,…
Descriptors: Classification, Bayesian Statistics, Observational Learning, Preferences
Peer reviewed Peer reviewed
Direct linkDirect link
Restrepo, Silvia; ter Horst, Enrique; Zambrano, Juan Diego; Gunn, Laura H.; Molina, German; Salazar, Carlos Andres – Education for Information, 2022
This manuscript builds on a novel, automatic, freely-available Bayesian approach to extract information in abstracts and titles to classify research topics by quartile. This approach is demonstrated for all N= 149,129 ISI-indexed publications in biological sciences journals during 2017. A Bayesian multinomial inverse regression approach is used to…
Descriptors: Bayesian Statistics, Biological Sciences, Trend Analysis, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Owen Henkel; Hannah Horne-Robinson; Maria Dyshel; Greg Thompson; Ralph Abboud; Nabil Al Nahin Ch; Baptiste Moreau-Pernet; Kirk Vanacore – Journal of Learning Analytics, 2025
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a mathematics learning platform used by middle and high school students in several African countries. Using this dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly challenging…
Descriptors: Learning Analytics, Learning Management Systems, Mathematics Instruction, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ava Greenwood; Sara Davies; Timothy J. McIntyre – Australian Mathematics Education Journal, 2023
This article is motivated by the importance of developing statistically literate students. The authors present a selection of problems that could be used to motivate student interest in probability as well as providing additional depth to the curriculum when used alongside traditional resources. The solutions presented utilise natural frequencies…
Descriptors: Probability, Mathematics Instruction, Teaching Methods, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Changqin; Wu, Xuemei; Wang, Xizhe; He, Tao; Jiang, Fan; Yu, Jianhui – Educational Technology & Society, 2021
Collaborative reflection (co-reflection) plays a vital role in collaborative knowledge construction and behavior shared regulation. Although the mixed effect of online co-reflection was reported in the literature, few studies have comprehensively examined both individual and group factors and their relationships that affect the co-reflection…
Descriptors: Cooperation, Reflection, Objectives, Achievement Need
Peer reviewed Peer reviewed
Direct linkDirect link
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Buyukatak, Emrah; Anil, Duygu – International Journal of Assessment Tools in Education, 2022
The purpose of this research was to determine classification accuracy of the factors affecting the success of students' reading skills based on PISA 2018 data by using Artificial Neural Networks, Decision Trees, K-Nearest Neighbor, and Naive Bayes data mining classification methods and to examine the general characteristics of success groups. In…
Descriptors: Classification, Accuracy, Reading Tests, Achievement Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Qingtang; Zhang, Si; Wang, Qiyun; Chen, Wenli – IEEE Transactions on Learning Technologies, 2018
Teachers' online discussion text data shed light on their reflective thinking. With the growing scale of text data, the traditional way of manual coding, however, has been challenged. In order to process the large-scale unstructured text data, it is necessary to integrate the inductive content analysis method and educational data mining…
Descriptors: Information Retrieval, Data Collection, Data Analysis, Discourse Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Koris, Riina; Nokelainen, Petri – International Journal of Educational Management, 2015
Purpose: The purpose of this paper is to study Bayesian dependency modelling (BDM) to validate the model of educational experiences and the student-customer orientation questionnaire (SCOQ), and to identify the categories of educatonal experience in which students expect a higher educational institutions (HEI) to be student-customer oriented.…
Descriptors: College Students, Questionnaires, Bayesian Statistics, Educational Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Suranyi, Zsuzsanna; Hitchcock, David B.; Hittner, James B.; Vargha, Andras; Urban, Robert – International Journal of Behavioral Development, 2013
Previous research on sensation seeking (SS) was dominated by a variable-oriented approach indicating that SS level has a linear relation with a host of problem behaviors. Our aim was to provide a person-oriented methodology--a probabilistic clustering--that enables examination of both inter- and intra-individual differences in not only the level,…
Descriptors: Personality Traits, Behavior Problems, Conceptual Tempo, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2011
The assumption in some current theories of probabilistic categorization is that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report 2 probabilistic-categorization experiments in which we investigated error…
Descriptors: Evidence, Feedback (Response), Associative Learning, Classification
Nokelainen, Petri; Ruohotie, Pekka; Tirri, Henry – 1999
Bayesian and classical approaches to classification of vocational data were compared using an educational data set from a longitudinal study of professional growth and development in organizations (P. Ruohotie et al., 1994). Data were from 2,430 workers in companies in Finland who completed a questionnaire with behavior and background statements.…
Descriptors: Bayesian Statistics, Classification, Computer Software, Employment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Previous Page | Next Page »
Pages: 1  |  2