NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Elisabeth Bauer; Michael Sailer; Frank Niklas; Samuel Greiff; Sven Sarbu-Rothsching; Jan M. Zottmann; Jan Kiesewetter; Matthias Stadler; Martin R. Fischer; Tina Seidel; Detlef Urhahne; Maximilian Sailer; Frank Fischer – Journal of Computer Assisted Learning, 2025
Background: Artificial intelligence, particularly natural language processing (NLP), enables automating the formative assessment of written task solutions to provide adaptive feedback automatically. A laboratory study found that, compared with static feedback (an expert solution), adaptive feedback automated through artificial neural networks…
Descriptors: Artificial Intelligence, Feedback (Response), Computer Simulation, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Gombert, Sebastian; Di Mitri, Daniele; Karademir, Onur; Kubsch, Marcus; Kolbe, Hannah; Tautz, Simon; Grimm, Adrian; Bohm, Isabell; Neumann, Knut; Drachsler, Hendrik – Journal of Computer Assisted Learning, 2023
Background: Formative assessments are needed to enable monitoring how student knowledge develops throughout a unit. Constructed response items which require learners to formulate their own free-text responses are well suited for testing their active knowledge. However, assessing such constructed responses in an automated fashion is a complex task…
Descriptors: Coding, Energy, Scientific Concepts, Formative Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
L. Hannah; E. E. Jang; M. Shah; V. Gupta – Language Assessment Quarterly, 2023
Machines have a long-demonstrated ability to find statistical relationships between qualities of texts and surface-level linguistic indicators of writing. More recently, unlocked by artificial intelligence, the potential of using machines to identify content-related writing trait criteria has been uncovered. This development is significant,…
Descriptors: Validity, Automation, Scoring, Writing Assignments
Peer reviewed Peer reviewed
Direct linkDirect link
Benotti, Luciana; Martinez, Maria Cecilia; Schapachnik, Fernando – IEEE Transactions on Learning Technologies, 2018
In this paper we present a software platform called Chatbot designed to introduce high school students to Computer Science (CS) concepts in an innovative way: by programming chatbots. A chatbot is a bot that can be programmed to have a conversation with a human or robotic partner in some natural language such as English or Spanish. While…
Descriptors: Formative Evaluation, Introductory Courses, Computer Science, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Di Caro, Luigi; Rabellino, Sergio; Fioravera, Michele; Marchisio, Marina – International Association for Development of the Information Society, 2018
This paper discusses a model for structuring resources for automatic assessment in scientific education by means of textual descriptions. This study aims to support instructors in extending teaching strategies and expanding formative assessment in virtual communities of practice. The strategy to achieve these goals involves the implementation of a…
Descriptors: Models, Teaching Methods, Formative Evaluation, Computer Simulation
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers