NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2023
In order to evaluate the effect of a policy or treatment with pre- and post-treatment outcomes, we propose an approach based on a transition model, which may be applied with multivariate outcomes and accounts for unobserved heterogeneity. This model is based on potential versions of discrete latent variables representing the individual…
Descriptors: Causal Models, Multivariate Analysis, Markov Processes, Human Capital
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2011
An extension of the latent Markov Rasch model is described for the analysis of binary longitudinal data with covariates when subjects are collected in clusters, such as students clustered in classes. For each subject, a latent process is used to represent the characteristic of interest (e.g., ability) conditional on the effect of the cluster to…
Descriptors: Markov Processes, Data Analysis, Maximum Likelihood Statistics, Computation
Jeon, Minjeong – ProQuest LLC, 2012
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Maximum Likelihood Statistics
Mark, Kevin; Karmel, Tom – National Centre for Vocational Education Research (NCVER), 2010
This paper estimates vocational education and training (VET) course-completion rates, in order to fill a gap in performance measures for the VET sector. The technique the authors use is to track all VET course enrolments within a three-year window, centred on the year of interest. Then, using an absorbing Markov chain model for a VET course…
Descriptors: Markov Processes, Qualifications, Vocational Education, Models
Akkermans, Wies M. W. – 1994
In order to obtain conditional maximum likelihood estimates, the so-called conditioning estimates have to be calculated. In this paper a method is examined that does not calculate these constants exactly, but approximates them using Monte Carlo Markov Chains. As an example, the method is applied to the conditional estimation of both item and…
Descriptors: Estimation (Mathematics), Foreign Countries, Markov Processes, Maximum Likelihood Statistics