Publication Date
In 2025 | 2 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 16 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 16 |
Descriptor
Algorithms | 16 |
Foreign Countries | 16 |
Prediction | 16 |
Artificial Intelligence | 11 |
Models | 6 |
Academic Achievement | 5 |
College Students | 5 |
Classification | 4 |
Accuracy | 3 |
At Risk Students | 3 |
Electronic Learning | 3 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 13 |
Reports - Research | 12 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 10 |
Secondary Education | 3 |
Elementary Secondary Education | 2 |
Elementary Education | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Two Year Colleges | 1 |
Audience
Policymakers | 1 |
Location
South Korea | 4 |
Australia | 2 |
United States | 2 |
Africa | 1 |
Asia | 1 |
Chile | 1 |
China | 1 |
Denmark | 1 |
Europe | 1 |
Finland | 1 |
France | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment Program… | 1 |
Program for International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Mouna Ben Said; Yessine Hadj Kacem; Abdulmohsen Algarni; Atef Masmoudi – Education and Information Technologies, 2024
In the current educational landscape, where large amounts of data are being produced by institutions, Educational Data Mining (EDM) emerges as a critical discipline that plays a crucial role in extracting knowledge from this data to help academic policymakers make decisions. EDM has a primary focus on predicting students' academic performance.…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Ersoy Öz; Okan Bulut; Zuhal Fatma Cellat; Hülya Yürekli – Education and Information Technologies, 2025
Predicting student performance in international large-scale assessments (ILSAs) is crucial for understanding educational outcomes on a global scale. ILSAs, such as the Program for International Student Assessment and the Trends in International Mathematics and Science Study, serve as vital tools for policymakers, educators, and researchers to…
Descriptors: Foreign Countries, Achievement Tests, Secondary School Students, International Assessment
Jialun Pan; Zhanzhan Zhao; Dongkun Han – IEEE Transactions on Learning Technologies, 2025
Properly predicting students' academic performance is crucial for elevating educational outcomes in various disciplines. Through precise performance prediction, schools can quickly pinpoint students facing challenges and provide customized educational materials suited to their specific learning needs. The reliance on teachers' experience to…
Descriptors: Prediction, Academic Achievement, At Risk Students, Artificial Intelligence
Yoonjae Noh; YoonIl Yoon; Sangjin Kim – Measurement: Interdisciplinary Research and Perspectives, 2024
The default risk, one of the main risk factors for bonds, should be measured and reflected in the bond yield. Particularly, in the case of financial companies that treat bonds as a major product, failure to properly identify and filter customers' workout status adversely affects returns. This study proposes a two-stage classification algorithm for…
Descriptors: Prediction, Classification, Accuracy, Risk
Hyemin Yoon; HyunJin Kim; Sangjin Kim – Measurement: Interdisciplinary Research and Perspectives, 2024
We have maintained the customer grade system that is being implemented to customers with excellent performance through customer segmentation for years. Currently, financial institutions that operate the customer grade system provide similar services based on the score calculation criteria, but the score calculation criteria vary from the financial…
Descriptors: Classification, Artificial Intelligence, Prediction, Decision Making
Verger, Mélina; Lallé, Sébastien; Bouchet, François; Luengo, Vanda – International Educational Data Mining Society, 2023
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against some students and possible harmful long-term…
Descriptors: Prediction, Models, Student Behavior, Academic Achievement
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Eegdeman, Irene; Cornelisz, Ilja; Meeter, Martijn; van Klaveren, Chris – Education Economics, 2023
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for…
Descriptors: Foreign Countries, Vocational Schools, Dropout Characteristics, Dropout Prevention
Zexuan Pan; Maria Cutumisu – AERA Online Paper Repository, 2023
Computational thinking (CT) is a fundamental ability for learners in today's society. Although CT assessments and interventions have been studied widely, little is known about CT predictions. This study predicted students' CT achievement in the ICILS 2018 using five machine learning models. These models were trained on the data from five European…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Prediction
M. P. R. I. R. Silva; R. A. H. M. Rupasingha; B. T. G. S. Kumara – Technology, Pedagogy and Education, 2024
Today, in every academic institution as well as the university system assessing students' performance, identifying the uniqueness of each student and finding solutions to performance problems have become challenging issues. The main purpose of the study is to predict how student performance changes as a result of their behaviours, hobbies,…
Descriptors: Artificial Intelligence, Student Evaluation, Prediction, Recreational Activities
Yangyang Luo; Xibin Han; Chaoyang Zhang – Asia Pacific Education Review, 2024
Learning outcomes can be predicted with machine learning algorithms that assess students' online behavior data. However, there have been few generalized predictive models for a large number of blended courses in different disciplines and in different cohorts. In this study, we examined learning outcomes in terms of learning data in all of the…
Descriptors: Prediction, Learning Management Systems, Blended Learning, Classification
Julio Rodriguez – ProQuest LLC, 2024
In this dissertation, I present an examination of the economics of education through three chapters. In the first paper, I study the overrepresentation of elite university graduates in senior positions in public administration. Using rich administrative data from Chile, I employ a stacked fuzzy regression discontinuity design to estimate the…
Descriptors: Economics, Disproportionate Representation, Public Administration, College Graduates
Jian-Wei Tzeng; Nen-Fu Huang; Yi-Hsien Chen; Ting-Wei Huang; Yu-Sheng Su – Educational Technology & Society, 2024
Massive open online courses (MOOCs; online courses delivered over the Internet) enable distance learning without time and place constraints. MOOCs are popular; however, active participation level among students who take MOOCs is generally lower than that among students who take in-person courses. Students who take MOOCs often lack guidance, and…
Descriptors: MOOCs, Artificial Intelligence, Electronic Learning, Student Participation
Kamdjou, Herve D. Teguim – Open Education Studies, 2023
This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach…
Descriptors: Outcomes of Education, Artificial Intelligence, Human Capital, Regression (Statistics)
Alshurideh, Muhammad; Al Kurdi, Barween; Salloum, Said A.; Arpaci, Ibrahim; Al-Emran, Mostafa – Interactive Learning Environments, 2023
Despite the plethora of m-learning acceptance studies, few have tackled the importance of examining the actual use of m-learning systems from the lenses of social influence, expectation-confirmation, and satisfaction. Additionally, most of the prior technology adoption literature tends to use the structural equation modeling (SEM) technique in…
Descriptors: Electronic Learning, Prediction, Least Squares Statistics, Structural Equation Models
Previous Page | Next Page »
Pages: 1 | 2