Publication Date
In 2025 | 3 |
Since 2024 | 11 |
Since 2021 (last 5 years) | 46 |
Since 2016 (last 10 years) | 102 |
Since 2006 (last 20 years) | 163 |
Descriptor
Foreign Countries | 178 |
Prediction | 178 |
Data Analysis | 113 |
Models | 53 |
Data Collection | 48 |
Academic Achievement | 39 |
College Students | 35 |
Artificial Intelligence | 31 |
Undergraduate Students | 26 |
Classification | 25 |
Higher Education | 23 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Administrators | 1 |
Policymakers | 1 |
Practitioners | 1 |
Teachers | 1 |
Location
Australia | 30 |
Germany | 13 |
Turkey | 13 |
United Kingdom | 12 |
China | 10 |
Canada | 8 |
United States | 8 |
Brazil | 7 |
United Kingdom (England) | 6 |
Greece | 5 |
Italy | 5 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 8 |
Early Childhood Longitudinal… | 2 |
Massachusetts Comprehensive… | 1 |
National Assessment Program… | 1 |
Study Process Questionnaire | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Michos, Konstantinos; Schmitz, Maria-Luisa; Petko, Dominik – Education and Information Technologies, 2023
Since schools increasingly use digital platforms that provide educational data in digital formats, teacher data use, and data literacy have become a focus of educational research. One main challenge is whether teachers use digital data for pedagogical purposes, such as informing their teaching. We conducted a survey study with N = 1059 teachers in…
Descriptors: Secondary School Teachers, Prediction, Data Use, Data Analysis
Xiang Feng; Keyi Yuan; Xiu Guan; Longhui Qiu – Interactive Learning Environments, 2024
Datasets are critical for emotion analysis in the machine learning field. This study aims to explore emotion analysis datasets and related benchmarks in online learning, since, currently, there are very few studies that explore the same. We have scientifically labeled the topic and nine-category emotion of 4715 comment texts in online learning…
Descriptors: MOOCs, Psychological Patterns, Artificial Intelligence, Prediction
Kuvar, Vishal; Flynn, Lauren; Allen, Laura; Mills, Caitlin – International Educational Data Mining Society, 2023
Computer-mediated social learning contexts have become increasingly popular over the last few years; yet existing models of students' cognitive-affective states have been slower to adopt dyadic interaction data for predictions. Here, we explore the possibility of capitalizing on the inherently social component of collaborative learning by using…
Descriptors: Computer Mediated Communication, Trust (Psychology), Socialization, Keyboarding (Data Entry)
Erik Eliassen; Ragnhild Eek Brandlistuen; Mari Vaage Wang – European Early Childhood Education Research Journal, 2024
Many studies have linked quality in early childhood education and care [ECEC] to school performance, but the mechanisms of how ECEC process quality affects children in ways that lead to improved school performance is unclear. In this study on 7431 children in Norway, we test the hypothesis that the relation between process quality in ECEC and…
Descriptors: Early Childhood Education, Academic Achievement, Foreign Countries, Interpersonal Competence
Alturki, Sarah; Cohausz, Lea; Stuckenschmidt, Heiner – Smart Learning Environments, 2022
The tremendous growth in electronic educational data creates the need to have meaningful information extracted from it. Educational Data Mining (EDM) is an exciting research area that can reveal valuable knowledge from educational databases. This knowledge can be used for many purposes, including identifying dropouts or weak students who need…
Descriptors: Information Retrieval, Data Analysis, Data Use, Prediction
Yousafzai, Bashir Khan; Hayat, Maqsood; Afzal, Sher – Education and Information Technologies, 2020
The presented work is a student marks and grade prediction system using supervised machine learning techniques, the system is developed on the historic performance of students. The data used in this research is collected from Federal Board of Intermediate and Secondary Education Islamabad Pakistan, there are 7 regions in FBISE i.e. Punjab, Sindh,…
Descriptors: Artificial Intelligence, Foreign Countries, Prediction, Grades (Scholastic)
Hussain, Asif; Khan, Muzammil; Ullah, Kifayat – Education and Information Technologies, 2022
Educational institutions are creating a considerable amount of data regarding students, faculty and related organs. This data is an essential asset for academic institutions as it has valuable insights, knowledge and intelligence for the policymakers. Students are the fundamental entities and primary source of data creation in any educational…
Descriptors: Data Analysis, Artificial Intelligence, Prediction, Academic Achievement
Wudhijaya Philuek – Asian Journal of Education and Training, 2024
The objectives of this research were 1) to study the problems of stress and depression among Grade 12 students; 2) to investigate the machine learning technique in analyzing and predicting stress, depression, and academic performance among Grade 12 students; and 3) to evaluate the stress and depression prediction platform. Students from schools in…
Descriptors: Artificial Intelligence, Stress Variables, Depression (Psychology), Academic Achievement
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Adam Diamant – INFORMS Transactions on Education, 2024
Managers are increasingly being tasked with overseeing data-driven projects that incorporate prescriptive and predictive models. Furthermore, basic knowledge of the data analytics pipeline is a fundamental requirement in many modern organizations. Given the central importance of analytics in today's business environment, there is a growing demand…
Descriptors: Business Administration Education, Graduate Students, Prediction, Mathematical Concepts
Takashi Kawakami; Akihiko Saeki – Mathematics Education Research Group of Australasia, 2024
This study elaborates on the pivotal roles of mathematical and statistical models in data-driven predictions in an integrated STEM context using the case of Year 4 students: (?) "a descriptive means" to describe the features of trends and variability of data and (?) "an explanatory means" to explain causal relationships behind…
Descriptors: Mathematical Models, Statistical Analysis, Data Use, Prediction
Mohamed Zine; Fouzi Harrou; Mohammed Terbeche; Ying Sun – Education and Information Technologies, 2025
E-learning readiness (ELR) is critical for implementing digital education strategies, particularly in developing countries where online learning faces unique challenges. This study aims to provide a concise and actionable framework for assessing and predicting ELR in Algerian universities by combining the ADKAR model with advanced machine learning…
Descriptors: Electronic Learning, Learning Readiness, Artificial Intelligence, Organizational Change
Jang, Hoon – Research Evaluation, 2022
Increasing investment and interest in research and development (R&D) requires an efficient management system for achieving better research project outputs. In tandem with this trend, there is a growing need to develop a method for predicting research project outputs. Motivated by this, using information gathered in the early stage of projects,…
Descriptors: Research and Development, Research Projects, Prediction, Mathematics
Choi, Jungtae; Kim, Kihyun – Prevention Science, 2022
The purpose of this study was to explore and identify patterns of risk predictors of maltreatment recurrence using predictive risk modeling (PRM). This study used the administrative dataset from the National Child Maltreatment Information System recorded by Korean CPS (Child Protective Service) workers. The information, including recurrent…
Descriptors: Foreign Countries, Child Abuse, Social Services, Children
Anastasia Michalopoulou; Sonia Kafoussi – International Electronic Journal of Mathematics Education, 2024
This paper argues that engaging students in informal statistical reasoning from early school years is essential for the development of statistical understanding. We investigated if and how children aged six-seven years old identified variation in a table of data and made predictions through the design of a teaching experiment. The classroom…
Descriptors: Statistics, Thinking Skills, Grade 1, Elementary School Students